herbivore communities
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Pengjuan Zu ◽  
Karina Boege ◽  
Ek del Val ◽  
Meredith Christine Schuman ◽  
Phil Stevenson ◽  
...  

Zu et al. 2020 (1) proposed a simple, parameter-free, information-arms-race theory to explain the distributions of plant-herbivore interactions and plant-volatile associations observed in plant-herbivore communities. We received a comment by Bass and Kessler (Oct. 2020) questioning this theory and suggesting that a simpler neutral model can explain the observed distributions. This, with our response, went to peer review and was not published (Oct. 29, 2020). The authors have decided to publish their comment on EcoEvoRxiv (2) and so here, we are posting our reply. In sum, we present arguments to show that the comment from Bass and Kessler is based on an incorrect understanding of our study and furthermore suffers from circular reasoning, and that therefore their conclusions are not supported.


2021 ◽  
Author(s):  
Pengjuan Zu ◽  
Serguei ◽  
Karina Boege ◽  
Ek del Val ◽  
Meredith Christine Schuman ◽  
...  

Zu et al. 2020 (1) proposed a simple, parameter-free, information-arms-race theory to explain the distributions of plant-herbivore interactions and plant-volatile associations observed in plant-herbivore communities. We received a comment by Bass and Kessler (Oct. 2020) questioning this theory and suggesting that a simpler neutral model can explain the observed distributions. This, with our response, went to peer review and was not published (Oct. 29, 2020). The authors have decided to publish their comment on EcoEvoRxiv (2) and so here, we are posting our reply. In sum, we present arguments to show that the comment from Bass and Kessler is based on an incorrect understanding of our study and furthermore suffers from circular reasoning, and that therefore their conclusions are not supported.


2021 ◽  
Author(s):  
James D. M. Speed ◽  
Jesus Adrian Ballesteros Chimal ◽  
Michael D. Martin ◽  
Isabel C. Barrio ◽  
Katariina E. M. Vuorinen ◽  
...  

2021 ◽  
Author(s):  
Youssef Yacine ◽  
Nicolas Loeuille

Ecological communities consist of multiple species interacting in diverse ways. Understanding the mechanisms supporting coexistence requires accounting for such a diversity. Because most works focus either on mutualism or predation, how pollination and herbivory interactively determine the stable coexistence in plant-pollinator-herbivore communities is still poorly understood. Studying the typical three-species module of such communities, we determine the conditions allowing stable coexistence then investigate how its maintenance constrains the relative interaction strengths. Our results show that coexistence is possible if pollination is sufficiently strong relative to herbivory, while its stability is possible if herbivory is sufficiently strong relative to pollination. A balance between pollination and herbivory is therefore required. Interestingly, shared preferences for plant phenotypes, that would favor such balance, have been frequently reported in the empirical literature. The identified ecological trade-off between attracting pollinators and deterring herbivores therefore also appears as an emergent property of stable plant-pollinator-herbivore communities.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 361
Author(s):  
Casey S. Philbin ◽  
Matthew Paulsen ◽  
Lora A. Richards

Identifying the interactions of functional, biotic, and abiotic factors that define plant–insect communities has long been a goal of community ecologists. Metabolomics approaches facilitate a broader understanding of how phytochemistry mediates the functional interactions among ecological factors. Ceanothus velutinus communities are a relatively unstudied system for investigating chemically mediated interactions. Ceanothus are nitrogen-fixing, fire-adapted plants that establish early post-fire, and produce antimicrobial cyclic peptides, linear peptides, and flavonoids. This study takes a metabolomic approach to understanding how the diversity and variation of C. velutinus phytochemistry influences associated herbivore and parasitoid communities at multiple spatiotemporal scales. Herbivores and foliar samples were collected over three collection times at two sites on the east slope of the Sierra Nevada Mountain range. Foliar tissue was subjected to LC-MS metabolomic analysis, and several novel statistical analyses were applied to summarize, quantify, and annotate variation in the C. velutinus metabolome. We found that phytochemistry played an important role in plant–insect community structure across an elevational gradient. Flavonoids were found to mediate biotic and abiotic influences on herbivores and associated parasitoids, while foliar oligopeptides played a significant positive role in herbivore abundance, even more than abundance of host plants and leaf abundance. The importance of nutritional and defense chemistry in mediating ecological interactions in C. velutinus plant–herbivore communities was established, justifying larger scale studies of this plant system that incorporate other mediators of phytochemistry such as genetic and metageomic contributions.


2021 ◽  
Vol 7 (20) ◽  
pp. eabf3985
Author(s):  
Felix Neff ◽  
Martin Brändle ◽  
Didem Ambarlı ◽  
Christian Ammer ◽  
Jürgen Bauhus ◽  
...  

Land-use intensification poses major threats to biodiversity, such as to insect herbivore communities. The stability of these communities depends on interactions linking herbivores and host plants. How interaction network structure begets robustness, and thus stability, in different ecosystems and how network structure and robustness are altered along land-use intensity gradients are unclear. We analyzed plant-herbivore networks based on literature-derived interactions and long-term sampling from 289 grasslands and forests in three regions of Germany. Network size and nestedness were the most important determinants of network robustness in both ecosystems. Along land-use intensity gradients, networks in moderately grazed grasslands were more robust than in those managed by frequent mowing or fertilization. In forests, changes of network robustness along land-use intensity gradients relied on changes in plant species richness. Our results expand our knowledge of the stability of plant-herbivore networks and indicate options for management aimed at stabilizing herbivore communities.


Author(s):  
Jeong Ho Hwang ◽  
Sung-Yeol Kim ◽  
Eunjoong Kim ◽  
Joo Hyuk Yoon ◽  
Mean-Young Yim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document