community variation
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 52)

H-INDEX

23
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Haijun Yuan ◽  
Weizhen Zhang ◽  
Huaqun Yin ◽  
Runyu Zhang ◽  
Jianjun Wang

Abstract Microbial beta diversity has been recently studied along the water depth in aquatic ecosystems, however its turnover and nestedness components remain elusive especially for multiple taxonomic groups. Based on the beta diversity partitioning developed by Baselga and Local Contributions to Beta Diversity (LCBD) partitioning by Legendre, we examined the water-depth variations in beta diversity components of bacteria, archaea and fungi in surface sediments of Hulun Lake, a semi-arid lake in northern China, and further explored the relative importance of environmental drivers underlying their patterns. We found that the relative abundances of Proteobacteria, Chloroflexi, Euryarchaeota and Rozellomycota increased towards deep water, while Acidobacteria, Parvarchaeota and Chytridiomycota decreased. For bacteria and archaea, there were significant (P < 0.05) decreasing water-depth patterns for LCBD and LCBDRepl (i.e., species replacement), while increasing patterns for total beta diversity and turnover, implying that total beta diversity and LCBD were dominated by species turnover or LCBDRepl. Further, bacteria showed a strong correlation with archaea regarding LCBD, total beta diversity and turnover. Such parallel patterns among bacteria and archaea were underpinned by similar ecological processes like environmental selection. Total beta diversity and turnover were largely affected by sediment total nitrogen, while LCBD and LCBDRepl were mainly constrained by water NO2−-N and NO3−-N. For fungal community variation, no significant patterns were observed, which may be due to different drivers like water nitrogen or phosphorus. Taken together, our findings provide compelling evidences for disentangling the underlying mechanisms of community variation in multiple aquatic microbial taxonomic groups.


2021 ◽  
Vol 168 ◽  
pp. 104126
Author(s):  
Chenhua Li ◽  
Yan Li ◽  
Jie Ma ◽  
Yugang Wang ◽  
Zhifang Wang ◽  
...  

Weed Research ◽  
2021 ◽  
Author(s):  
Carolyn J. Lowry ◽  
Daniel C. Brainard ◽  
Virender Kumar ◽  
Richard G. Smith ◽  
Madhulika Singh ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Weiwei Liu ◽  
George B. McManus ◽  
Xiaofeng Lin ◽  
Honghui Huang ◽  
Wenjing Zhang ◽  
...  

Ciliates are abundant microplankton that are widely distributed in the ocean. In this paper, the distribution patterns of ciliate diversity in the South China Sea (SCS) were analyzed by compiling community data from previous publications. Based on morphological identification, a total of 592 ciliate species have been recorded in the SCS. The ciliate communities in intertidal, neritic and oceanic water areas were compared in terms of taxonomy, motility and feeding habit composition, respectively. Significant community variation was revealed among the three areas, but the difference between the intertidal area and the other two areas was more significant than that between neritic and oceanic areas. The distributions of ciliates within each of the three areas were also analyzed. In the intertidal water, the community was not significantly different among sites but did differ among habitat types. In neritic and oceanic areas, the spatial variation of communities among different sites was clearly observed. Comparison of communities by taxonomic and ecological traits (motility and feeding habit) indicated that these traits similarly revealed the geographical pattern of ciliates on a large scale in the SCS, but to distinguish the community variation on a local scale, taxonomic traits has higher resolution than ecological traits. In addition, we assessed the relative influences of environmental and spatial factors on assembly of ciliate communities in the SCS and found that environmental selection is the major process structuring the taxonomic composition in intertidal water, while spatial processes played significant roles in influencing the taxonomic composition in neritic and oceanic water. Among ecological traits, environmental selection had the most important impact on distributions.


2021 ◽  
Vol 9 (8) ◽  
pp. 1788
Author(s):  
Yangyi Hao ◽  
Yue Gong ◽  
Shuai Huang ◽  
Shoukun Ji ◽  
Wei Wang ◽  
...  

To understand the effects of diet and age on the rumen bacterial community and function, forty-eight dairy cattle at 1.5 (M1.5), 6 (M6), 9 (M9), 18 (M18), 23 (M23), and 27 (M27) months old were selected. Rumen fermentation profile, enzyme activity, and bacteria community in rumen fluid were measured. The acetate to propionate ratio (A/P) at M9, M18, and M23 was higher than other ages, and M6 was the lowest (p < 0.05). The total volatile fatty acid (TVFA) at M23 and M27 was higher than at other ages (p < 0.05). The urease at M18 was lower than at M1.5, M6, and M9, and the xylanase at M18 was higher than at M1.5, M23, and M27 (p < 0.05). Thirty-three bacteria were identified as biomarkers of the different groups based on the linear discriminant analysis (LDA) when the LDA score >4. The variation partitioning approach analysis showed that the age and diet had a 7.98 and 32.49% contribution to the rumen bacteria community variation, respectively. The richness of Succinivibrionaceae_UCG-002 and Fibrobacter were positive correlated with age (r > 0.60, p < 0.01) and positively correlated with TVFA and acetate (r > 0.50, p < 0.01). The Lachnospiraceae_AC2044_group, Pseudobutyrivibrio, and Saccharofermentans has a positive correlation (r > 0.80, p < 0.05) with diet fiber and a negative correlation (r < −0.80, p < 0.05) with diet protein and starch, which were also positively correlated with the acetate and A/P (r > 0.50, p < 0.01). The genera of Lachnospiraceae_AC2044_group, Pseudobutyrivibrio, and Saccharofermentans could be worked as the target bacteria to modulate the rumen fermentation by diet; meanwhile, the high age correlated bacteria such as Succinivibrionaceae_UCG-002 and Fibrobacter also should be considered when shaping the rumen function.


Chemosphere ◽  
2021 ◽  
Vol 275 ◽  
pp. 129898
Author(s):  
Julián Carrillo-Reyes ◽  
Germán Buitrón ◽  
Juan Sebastián Arcila ◽  
Matías Orlando López-Gómez

2021 ◽  
Author(s):  
Nadiia Yorkina ◽  
Natalia Tarusova ◽  
Ava Umerova ◽  
Polina Telyuk ◽  
Yevheniia Cherniak

Abstract The recreational load is an important factor in transforming the living conditions of living organisms in the urban environment. This article examines the role of recreation as a driver of the changing habitat of soil micromolluscs in the park environment in an urban landscape. The hypothesis that recreational exposure changes the hierarchical organization of the spatial distribution of the micromollusc community was tested. An experimental polygon was located in Novooleksandrivskiy Park (Melitopol, Ukraine) and represented 7 transects with 18 test points in each. The set of soil properties explained 24.7% of the variation in the mollusc community. The distance from trees was able to explain 6.8% of mollusc community variation. The distance from recreational pathways was able to explain 12.2% of the variation in the mollusc community. The spatial eigenfunctions were able to explain 54.2% of mollusc community variation. The spatial patterns of variation in the structure of the assemblage of molluscs were found to be due to various causes. Thus, the broad-scale component was due to the distance from trees and the distance fro m the recreational pathways and was associated with the variability of soil penetration resistance, aggregate structure, electrical conductivity, soil moisture and density. The recreational load is the cause of this pattern formation. In turn, the medium-scale component reflected the influence of soil aggregate composition on the mollusс community and components independent of soil properties. The fine-scale component reflected the variability of the mollusc community, which was independent of soil properties.


Sign in / Sign up

Export Citation Format

Share Document