mixed variable
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 36)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
pp. 1-25
Author(s):  
Julien Pelamatti ◽  
Loïc Brevault ◽  
Mathieu Balesdent ◽  
El-Ghazali Talbi ◽  
Yannick Guerin

2021 ◽  
pp. 107366
Author(s):  
Hu Peng ◽  
Yupeng Han ◽  
Changshou Deng ◽  
Jing Wang ◽  
Zhijian Wu

Author(s):  
Jamie A. Manson ◽  
Thomas W. Chamberlain ◽  
Richard A. Bourne

AbstractIn many real-world problems there is often the requirement to optimise multiple conflicting objectives in an efficient manner. In such problems there can be the requirement to optimise a mixture of continuous and discrete variables. Herein, we propose a new multi-objective algorithm capable of optimising both continuous and discrete bounded variables in an efficient manner. The algorithm utilises Gaussian processes as surrogates in combination with a novel distance metric based upon Gower similarity. The MVMOO algorithm was compared to an existing mixed variable implementation of NSGA-II and random sampling for three test problems. MVMOO shows competitive performance on all proposed problems with efficient data acquisition and approximation of the Pareto fronts for the selected test problems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ramazan Yazgan ◽  
Osman Tunç

AbstractThis study is about getting some conditions that guarantee the existence and uniqueness of the weighted pseudo almost periodic (WPAP) solutions of a Lasota–Wazewska model with time-varying delays. Some adequate conditions have been obtained for the existence and uniqueness of the WPAP solutions of the Lasota–Wazewska model, which we dealt with using some differential inequalities, the WPAP theory, and the Banach fixed point theorem. Besides, an application is given to demonstrate the accuracy of the conditions of our main results.


Author(s):  
Ishaan R. Kale ◽  
Anand J. Kulkarni

AbstractRecently, several socio-/bio-inspired algorithms have been proposed for solving a variety of problems. Generally, they perform well when applied for solving unconstrained problems; however, their performance degenerates when applied for solving constrained problems. Several types of penalty function approaches have been proposed so far for handling linear and non-linear constraints. Even though the approach is quite easy to understand, the precise choice of penalty parameter is very much important. It may further necessitate significant number of preliminary trials. To overcome this limitation, a new self-adaptive penalty function (SAPF) approach is proposed and incorporated into socio-inspired Cohort Intelligence (CI) algorithm. This approach is referred to as CI–SAPF. Furthermore, CI–SAPF approach is hybridized with Colliding Bodies Optimization (CBO) algorithm referred to as CI–SAPF–CBO algorithm. The performance of the CI–SAPF and CI–SAPF–CBO algorithms is validated by solving discrete and mixed variable problems from truss structure domain, design engineering domain, and several problems of linear and nonlinear in nature. Furthermore, the applicability of the proposed techniques is validated by solving two real-world applications from manufacturing engineering domain. The results obtained from CI–SAPF and CI–SAPF–CBO are promising and computationally efficient when compared with other nature inspired optimization algorithms. A non-parametric Wilcoxon’s rank sum test is performed on the obtained statistical solutions to examine the significance of CI–SAPF–CBO. In addition, the effect of the penalty parameter on pseudo-objective function, penalty function and constrained violations is analyzed and discussed along with the advantages over other algorithms.


Sign in / Sign up

Export Citation Format

Share Document