parametric variational principle
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Dongdong He ◽  
Qiang Gao ◽  
Wanxie Zhong

Based on the finite element method (FEM), the parametric variational principle (PVP) is combined with a numerical time-domain integral method to simulate the dynamic behavior of the pantograph-catenary system. Based on PVP, formulations for the nonlinear droppers in the catenary and for the contact between the pantograph and the contact wire are proposed. The formulations can accurately determine the tension state or compression state of the nonlinear droppers and the contact state between the pantograph and the contact wire. Based on the periodicity of the catenary and the precise integration method (PIM), a numerical time-integration method is developed for the dynamic responses of the catenary. For this method, the matrix exponential of only one unit cell of the catenary is computed, which greatly improves the computational efficiency. Moreover, the validation shows that the formulations can compute the contact force accurately and represent the nonlinearity of the droppers, which demonstrates the accuracy and reliability of the proposed method. Finally, the dynamic behaviors of the pantograph-catenary system with different types of catenaries are simulated.


2016 ◽  
Vol 08 (06) ◽  
pp. 1650082 ◽  
Author(s):  
Liang Zhang ◽  
Huiting Zhang ◽  
Jian Wu ◽  
Bo Yan ◽  
Mengkai Lu

Bi-modulus materials have different moduli in tension and compression and the stress–strain relation depends on principal stress that is unknown before displacement is determined. Establishment of variational principle is important for mechanical analysis of materials. First, parametric variational principle (PVP) is proposed for static analysis of bi-modulus materials and structures. A parametric variable indicating state of principal stress is included in the potential energy formulation and the nonlinear stress–strain relation is evolved into a linear complementarity constraint. Convergence of finite element analysis is thus improved. Then the proposed variational principle is extended to a dynamic problem and the dynamic equation can be derived based on Hamilton’s principle. Finite element analysis of nacreous bio-composites is performed, in which a unilateral contact behavior between two hard mineral bricks is modeled using the bi-modulus stress–strain relation. Effective modulus of composites can be determined numerically and stress mechanism of “tension–shear chain” in nacre is revealed. A delayed effect on stress propagation is found around the “gaps” between mineral bricks, when a tension force is loaded to nacreous bio-composites dynamically.


2014 ◽  
Vol 501-504 ◽  
pp. 2475-2478
Author(s):  
Shou Yi Xue

A parametric variational principle is deduced according to the equivalent integral form of all the controlling equations and boundary conditions in elasticity, and by adjusting the parameters, all kinds of variational principles put forward past and some new variational principles can be gained, which means that the method above is more clear in concept, and more concise.


2014 ◽  
Vol 6 ◽  
pp. 176897
Author(s):  
Aihua Liao ◽  
Xiaodong Chai ◽  
Jian Yang

This study analyzes the stress distribution of 3D elastoplastic contact problems by using the FE parametric quadratic programming (PQP) method derived from a 3D FE model based on parametric variational principle (PVP). We numerically analyze a 24-blade compressor by combining centrifugal loading with interference-fit one. To accelerate computation, calculation is simplified by structural modeling via multisubstructuring, aiming to deal with FE-simulated computer aided design (CAD) conveniently. We then analyze the relationships between the maximum residual stresses of the compressor posterior to prestressing and overspeed rpms, and we also study the distribution and magnitude of the contact stresses of the compressor in working conditions after overspeed prestressing. Moreover, we thoroughly discuss the distribution and magnitude of the contact stresses of shaft-shaft sleeve-impeller in working conditions. Relative displacement can be prevented and contact stress can be kept uniform due to the nonuniform initial amount of interference in overspeed prestressing. This paper summarizes the FEM simulation results and provides reference data for improving the design and processing of compressor impellers, indicating that overspeed is indispensable in manufacture.


Sign in / Sign up

Export Citation Format

Share Document