lake michigan lobe
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 0)

H-INDEX

16
(FIVE YEARS 0)

2017 ◽  
Vol 89 (3) ◽  
pp. 739-755 ◽  
Author(s):  
Thomas A. Nash ◽  
Jessica L. Conroy ◽  
David A. Grimley ◽  
William R. Guenthner ◽  
Ben Brandon Curry

AbstractThe chronology and cause of millennial depositional oscillations within last glacial loess of the Central Lowlands of the United States are uncertain. Here, we present a new age model that indicates the Peoria Silt along the Illinois River Valley accumulated episodically from ~28,500 to 16,000 cal yr BP, as the Lake Michigan Lobe margin fluctuated within northeastern Illinois. The age model indicates accelerated loess deposition coincident with regional glacial advances during the local last glacial maximum. A weakly developed paleosol, the Jules Geosol, represents a period of significantly slower deposition, from 23,700 to 22,000 cal yr BP. A gastropod assemblage-based reconstruction of mean July temperature shows temperatures 6–10°C cooler than modern during Peoria Silt deposition. Stable oxygen and carbon isotope values (δ18O and δ13C) of gastropod carbonate do not vary significantly across the pedostratigraphic boundary of the Jules Geosol, suggesting slower loess accumulation was a result of reduced glacial sediment supply rather than direct climatic factors. However, a decrease in δ18O values occurred between 26,000 and 24,000 cal yr BP, synchronous with the Lake Michigan Lobe’s southernmost advance. This δ18O decrease suggests a coupling of regional summer hydroclimate and ice lobe position during the late glacial period.


2016 ◽  
Author(s):  
Brandon Curry ◽  
◽  
Henry M. Loope ◽  
Thomas V. Lowell ◽  
Hong Wang ◽  
...  

2009 ◽  
Vol 55 (189) ◽  
pp. 131-146 ◽  
Author(s):  
Jason F. Thomason ◽  
Neal R. Iverson

AbstractDeep, pervasive shear deformation of the bed to high strains (>100) may have been primarily responsible for flow and sediment transport of the Lake Michigan lobe of the Laurentide ice sheet. To test this hypothesis, we sampled at 0.2 m increments a basal till from one advance of the lobe (Batestown till) along vertical profiles and measured fabrics due to both anisotropy of magnetic susceptibility and sand-grain preferred orientation. Unlike past fabric studies, interpretations were guided by results of laboratory experiments in which this till was deformed in simple shear to high strains. Fabric strengths indicate that more than half of the till sampled has a <5% probability of having been sheared to moderate strains (7–30). Secular changes in fabric azimuth over the thickness of the till, probably due to changing ice-flow direction as the lobe receded, indicate that the bed accreted with time and that the depth of deformation of the bed did not exceed a few decimeters. Orientations of principal magnetic susceptibilities show that the state of strain was commonly complex, deviating from bed-parallel simple shear. Deformation is inferred to have been focused in shallow, temporally variable patches during till deposition from ice.


Sign in / Sign up

Export Citation Format

Share Document