wakefield accelerators
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 30)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
D. Ullmann ◽  
P. Scherkl ◽  
A. Knetsch ◽  
T. Heinemann ◽  
A. Sutherland ◽  
...  

Author(s):  
Antoine Maitrallain ◽  
Enrico Brunetti ◽  
Matthew Streeter ◽  
Brendan Kettle ◽  
Roman Spesyvtsev ◽  
...  

Abstract Laser wakefield accelerators commonly produce on-axis, low-divergence, high-energy electron beams. However, a high charge, annular shaped beam can be trapped outside the bubble and accelerated to high energies. Here we present a parametric study on the production of low-energy-spread, ultra-relativistic electron ring beams in a two-stage gas cell. Ring-shaped beams with energies higher than 750 MeV are observed simultaneously with on axis, continuously injected electrons. Often multiple ring shaped beams with different energies are produced and parametric studies to control the generation and properties of these structures were conducted. Particle tracking and particle-in-cell simulations are used to determine properties of these beams and investigate how they are formed and trapped outside the bubble by the wake produced by on-axis injected electrons. These unusual femtosecond duration, high-charge, high-energy, ring electron beams may find use in beam driven plasma wakefield accelerators and radiation sources.


2021 ◽  
Vol 28 (12) ◽  
pp. 123105
Author(s):  
Yen-Yu Chang ◽  
Xiantao Cheng ◽  
Andrea Hannasch ◽  
Maxwell LaBerge ◽  
Joseph M. Shaw ◽  
...  

2021 ◽  
Author(s):  
Devki N. Gupta ◽  
Samuel R. Yoffe ◽  
Arohi Jain ◽  
Bernhard Ersfeld ◽  
Dino A. Jaroszynski

Abstract Achieving high quality electron beams in laser wakefield accelerators requires stable guiding of the intense driving laser pulse, which is challenging because of mode mismatching due to relativistic self-focusing. Here we show how an intense pre-pulse can be used to prepare the phase-space distribution of plasma electrons encountered by a trailing laser pulse so that it produces its own well-matched guiding channel, while minimising wakefield evolution. Controlling the propagation of high intensity laser pulses is an essential step in developing useful wakefield accelerators and compact radiation sources.


2021 ◽  
Author(s):  
Devki Nandan Gupta ◽  
Samuel Robert Yoffe ◽  
Arohi Jain ◽  
Bernhard Ersfeld ◽  
Dino Anthony Jaroszynski

Abstract Achieving high quality electron beams in laser wakefield accelerators requires stable guiding of the intense driving laser pulse, which is challenging because of mode mismatching due to relativistic self-focusing. Here we show how an intense pre-pulse can be used to prepare the phase-space distribution of plasma electrons encountered by a trailing laser pulse so that it produces its own well-matched guiding channel, while minimising wakefield evolution. Controlling the propagation of high intensity laser pulses is an essential step in developing useful wakefield accelerators and compact radiation sources.


Sign in / Sign up

Export Citation Format

Share Document