organic optoelectronic
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 94)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Samuele Giannini ◽  
Wei-Tao Peng ◽  
Lorenzo Cupellini ◽  
Daniele Padula ◽  
Antoine Carof ◽  
...  

Abstract Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, a highly efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrödinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials.


2022 ◽  
Author(s):  
Rian Esteves Aderne ◽  
Bruno Gabriel Alves Leite Borges ◽  
Harold Jose Camargo Avila ◽  
Fredrik von Kieseritzky ◽  
Jonas Hellberg ◽  
...  

A correct determination of the ionization potential (IP) and electron affinity (EA) as wells as the energy gap is essential to properly characterize a series of key phenomena related to...


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7373
Author(s):  
Wonseok Jang ◽  
Seunghun Han ◽  
Taejun Gu ◽  
Heeyeop Chae ◽  
Dongmok Whang

Due to the vulnerability of organic optoelectronic devices to moisture and oxygen, thin-film moisture barriers have played a critical role in improving the lifetime of the devices. Here, we propose a hexagonal boron nitride (hBN) embedded Al2O3 thin film as a flexible moisture barrier. After layer-by-layer (LBL) staking of polymer and hBN flake composite layer, Al2O3 was deposited on the nano-laminate template by spatial plasma atomic layer deposition (PEALD). Because the hBN flakes in Al2O3 thin film increase the diffusion path of moisture, the composite layer has a low water vapor transmission ratio (WVTR) value of 1.8 × 10−4 g/m2 day. Furthermore, as embedded hBN flakes restrict crack propagation, the composite film exhibits high mechanical stability in repeated 3 mm bending radius fatigue tests.


2021 ◽  
pp. 1799-1818
Author(s):  
Yin-Xiang Li ◽  
Xue-Mei Dong ◽  
Meng-Na Yu ◽  
He-Shan Zhang ◽  
Mustafa Eginligil ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Raj Pandya ◽  
Richard Y. S. Chen ◽  
Qifei Gu ◽  
Jooyoung Sung ◽  
Christoph Schnedermann ◽  
...  

AbstractStrong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1327
Author(s):  
Nguyen-Hung Tran ◽  
Van-Chuc Nguyen ◽  
Ji-Hoon Lee

Organic optoelectronic materials are rapidly being commercialized at present [...]


Sign in / Sign up

Export Citation Format

Share Document