organic semiconductors
Recently Published Documents


TOTAL DOCUMENTS

3059
(FIVE YEARS 750)

H-INDEX

129
(FIVE YEARS 17)

Author(s):  
SAGARIKA KHOUND ◽  
Jayanta Kumar Sarmah ◽  
RANJIT SARMA

Abstract In this work, we have studied the electrical performance of cross-linked polyvinyl phenol (cPVP) modified lanthanum oxide (La2O3) bilayer dielectric film in pentacene thin film transistors (TFT). A simple spin-coating and room temperature operated cross-linking reaction of the hydroxyl moieties of PVP and the nitrogen groups of PMF were carried out to form the cross-linked PVP. The deposition of a thin 30 nm cPVP layer over the La2O3 layer provided a low leakage current (<10−7A/cm2), causing a reduction in the interface trap density. Besides, the modified surface properties of the La2O3 layer were favorable for the growth of pentacene organic semiconductors. As a result, the current on-off ratio and the sub-threshold slope was improved from 104 and 1.0 V/decade to 105 and 0.67 V/decade. The La2O3∕cPVP pentacene TFT operated at −10 V also exhibited improvement in the field-effect mobility to 0.71 cm2/Vs from 0.48 cm2/Vs for the single-layer La2O3 (130 nm) device. Thus, our work demonstrates that the rare earth oxide La2O3 with cPVP is an excellent dielectric system in the context of emerging transistors with hybrid polymer gate dielectrics.


2022 ◽  
Author(s):  
Samuele Giannini ◽  
Wei-Tao Peng ◽  
Lorenzo Cupellini ◽  
Daniele Padula ◽  
Antoine Carof ◽  
...  

Abstract Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, a highly efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrödinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials.


2022 ◽  
Author(s):  
Fabian Bauch ◽  
Chuanding Dong ◽  
Stefan Schumacher

Lewis acid doping of organic semiconductors (OSCs) opens up new ways of p-type doping and has recently become of significant interest. As for the mechanistic understanding, it was recently proposed that upon protonation of the OSC backbone, electron transfer occurs between the protonated polymer chain and a neutral chain nearby, inducing a positive charge carrier in the latter [Nat. Mater. 18, 1327 (2019)]. To further clarify the underlying microscopic processes on a molecular level, in the present work, we analyze the influence of protons on the electronic properties of the widely used PCPDT–BT copolymer. We find that single protonation of the polymer chain leads to the formation of a polaron coupled to the position of the proton. Upon protonation of the same chain with a second proton, an intrachain electron transfer occurs, leaving behind a polaron largely decoupled from the proton positions. We also observe the possibility of an interchain electron transfer from a neutral chain to a double protonated chain in agreement with the mechanism recently proposed in the literature. The simulated vertical excitation spectra for an ensemble of protonated species with different amounts of protons enable a detailed interpretation of experimental observation on PCPDT–BT doped with the Lewis acid BCF. Our results further suggest that multi-protonation plays an important role for completing the mechanistic picture of Lewis acid doping of OSCs.


2022 ◽  
Author(s):  
Belinda Boehm ◽  
David Huang

From classical molecular dynamics simulations, we identify a simple and general predictor of molecular orientation at solid and vapour interfaces of isotropic fluids of anisotropic particles based on their shape and interaction anisotropy. For a wide variety of inter-particle interactions, temperatures, and substrate types within the range of typical organic semiconductors and their processing conditions, we find remarkable universal scaling of the orientation at the interface with the free energy calculated from pair interactions between close-packed nearest neighbours and an empirically derived universal relationship between the entropy and the shape anisotropy and bulk volume fraction of the fluid particles. The face-on orientation of fluid particles at the solid interface is generally predicted to be the equilibrium structure, although the alignment can be controlled by tuning the particle shape and substrate type, while changing the strength of fluid--fluid interactions is likely to play a less effective role. At the vapour interface, only the side-on structure is predicted, and conditions for which the face-on structure may be preferred, such as low temperature, low interaction anisotropy, or low shape anisotropy, are likely to result in little orientation preference (due to the low anisotropy) or be associated with a phase transition to an anisotropic bulk phase for systems with interactions in the range of typical organic semiconductors. Based on these results, we propose a set of guidelines for the rational design and processing of organic semiconductors to achieve a target orientation at a solid or vapour interface.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Shinichi Hata ◽  
Misaki Shiraishi ◽  
Soichiro Yasuda ◽  
Gergely Juhasz ◽  
Yukou Du ◽  
...  

Since future energy harvesting technologies require stable supply and high-efficiency energy conversion, there is an increasing demand for high-performance organic thermoelectric generators (TEGs) based on waterproof thermoelectric materials. The poor stability of n-type organic semiconductors in air and water has proved a roadblock in the development of reliable thermoelectric power generators. We developed a simple green route for preparing n-type carbon nanotubes (CNTs) by doping with cationic surfactants and fabricated films of the doped CNTs using only aqueous media. The thermoelectric properties of the CNT films were investigated in detail. The nanotubes doped using a cationic surfactant (cetyltrimethylammonium chloride (CTAC)) retained an n-doped state for at least 28 days when exposed to water and air, indicating higher stability than that for contemporary CNT-based thermoelectric materials. The wrapping of the surfactant molecules around the CNTs is responsible for blocking oxygen and water from attacking the CNT walls, thus, extending the lifetime of the n-doped state of the CNTs. We also fabricated thermoelectric power conversion modules comprising CTAC-doped (n-type) and sodium dodecylbenzenesulfonate- (SDBS-) doped (p-type) CNTs and tested their stabilities in water. The modules retained 80±2.4% of their initial maximum output power (at a temperature difference of 75°C) after being submerged in water for 30 days, even without any sealing fills to prevent device degradation. The remarkable stability of our CNT-based modules can enable the development of reliable soft electronics for underwater applications.


2022 ◽  
Author(s):  
David Huang ◽  
Huong Nguyen

We derive a systematic and general method for parametrizing coarse-grained molecular models consisting of anisotropic particles from fine-grained (e.g. all-atom) models for condensed-phase molecular dynamics simulations. The method, which we call anisotropic force-matching coarse-graining (AFM-CG), is based on rigorous statistical mechanical principles, enforcing consistency between the coarse-grained and fine-grained phase-space distributions to derive equations for the coarse-grained forces, masses, and moments of inertia in terms of properties of a condensed-phase fine-grained system. We verify the accuracy and efficiency of the method by coarse-graining liquid-state systems of two different anisotropic organic molecules, benzene and perylene, and show that the parametrized coarse-grained models more accurately describe properties of these systems than previous anisotropic coarse-grained models parametrized using other methods that do not account for finite-temperature and many-body effects on the condensed-phase coarse-grained interactions. The AFM-CG method will be useful for developing accurate and efficient dynamical simulation models of condensed-phase systems of molecules consisting of large, rigid, anisotropic fragments, such as nucleic acids, liquid crystals, and organic semiconductors.


2022 ◽  
Author(s):  
Yan Zeng ◽  
Guangchao Han ◽  
Yuanping Yi

Electrical conductivity is one of the key parameters for organic thermoelectrics and depends on both the concentration and mobility of charge carriers. To increase the carrier concentration, molecular dopants have to be added into organic semiconductor materials, whereas the introduction of dopants can influence the molecular packing structures and hence carrier mobility of the organic semiconductors. Herein, we have theoretically investigated the impact of different n-doping mechanisms on molecular packing and electron transport properties by taking N-DMBI-H and Q-DCM-DPPTT respectively as representative n-dopant and molecular semiconductor. The results show that when the doping reactions and charge transfer spontaneously occur in the solution at room temperature, the oppositely charged dopant and semiconductor molecules will be tightly bound to disrupt the semiconductor to form long-range molecular packing, leading to a substantial decrease of electron mobility in the doped film. In contrast, when the doping reactions and charge transfer are activated by heating the doped film, the molecular packing of the semiconductor is slight affected and hence the electron mobility remains quite high. This work indicates that thermally-activated n-doping is an effective way to achieve both high carrier concentration and high electron mobility in n-type organic thermoelectric materials.


Author(s):  
Xinzi Tian ◽  
Jiarong Yao ◽  
Siyu Guo ◽  
Zhaofeng Wang ◽  
Yanling Xiao ◽  
...  

Two-dimensional molecular crystals (2DMCs) are highly desirable to probe the intrinsic properties in organic semiconductors and are promising candidates for constructing high-performance optoelectronic devices. Liquids such as water are favorable...


Sign in / Sign up

Export Citation Format

Share Document