thiol signaling
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 2)

Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 225 ◽  
Author(s):  
Nadzeya Marozkina ◽  
Benjamin Gaston

Long considered vital to antioxidant defenses, thiol chemistry has more recently been recognized to be of fundamental importance to cell signaling. S-nitrosothiols—such as S-nitrosoglutathione (GSNO)—and hydrogen sulfide (H2S) are physiologic signaling thiols that are regulated enzymatically. Current evidence suggests that they modify target protein function primarily through post-translational modifications. GSNO is made by NOS and other metalloproteins; H2S by metabolism of cysteine, homocysteine and cystathionine precursors. GSNO generally acts independently of NO generation and has a variety of gene regulatory, immune modulator, vascular, respiratory and neuronal effects. Some of this physiology is shared with H2S, though the mechanisms differ. Recent evidence also suggests that molecules resulting from reactions between GSNO and H2S, such as thionitrous acid (HSNO), could also have a role in physiology. Taken together, these data suggest important new potential targets for thiol-based drug development.


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1326-1335 ◽  
Author(s):  
Ines Batinic-Haberle ◽  
Ivan Spasojevic

We have developed Mn porphyrins (MnPs) initially as mimics of superoxide dismutase (SOD) enzymes based on structure–activity relationships. Several cationic Mn porphyrins, being substituted with cationic ortho [Formula: see text]-alkyl- or alkoxyalkylpyridyl groups in meso positions of the porphyrin ring, have been identified as potential therapeutics based on their high SOD-like activity and high bioavailability. Two of those [Mn(III) meso-tetrakis([Formula: see text]-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP[Formula: see text] (BMX-010, AEOL10113) and Mn(III) meso-tetrakis(Nn-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP[Formula: see text] (BMX-001)] are now in five Phase II clinical trials. Studies of ours, and those of others, contributed to the understanding of the diverse activities of these compounds. With biologically compatible potentials and four biologically accessible oxidation states, Mn porphyrins interact with numerous reactive species, both as oxidants and reductants. Among those reactions, their abilities to (catalytically) oxidize [Formula: see text]-glutathionylate protein thiols may perhaps be their major in vivo mode of action. Via [Formula: see text]-glutathionylation, MnPs modulate actions of signaling proteins and, in turn, cellular apoptotic and proliferative pathways. During the major part of our stay in the USA, our lives have been dedicated to Mn porphyrins. Our families and especially our son and his three babies have been our inspiration not to give up on a life often burdened with hardship. It is thus our immense pleasure to see our compounds in clinical trials. Above all, we hope that our story will inspire future researchers to persevere — women in particular.


Sign in / Sign up

Export Citation Format

Share Document