faithful functor
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2018 ◽  
Vol 83 (1) ◽  
pp. 326-348 ◽  
Author(s):  
RUSSELL MILLER ◽  
BJORN POONEN ◽  
HANS SCHOUTENS ◽  
ALEXANDRA SHLAPENTOKH

AbstractFried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.



2018 ◽  
Vol 19 (2) ◽  
pp. 487-535 ◽  
Author(s):  
Ryan Grady ◽  
Owen Gwilliam

In this paper, we relate Lie algebroids to Costello’s version of derived geometry. For instance, we show that each Lie algebroid – and the natural generalization to dg Lie algebroids – provides an (essentially unique) $L_{\infty }$ space. More precisely, we construct a faithful functor from the category of Lie algebroids to the category of $L_{\infty }$ spaces. Then we show that for each Lie algebroid $L$, there is a fully faithful functor from the category of representations up to homotopy of $L$ to the category of vector bundles over the associated $L_{\infty }$ space. Indeed, this functor sends the adjoint complex of $L$ to the tangent bundle of the $L_{\infty }$ space. Finally, we show that a shifted symplectic structure on a dg Lie algebroid produces a shifted symplectic structure on the associated $L_{\infty }$ space.



Author(s):  
Takeshi Tsuji

This chapter describes the cohomology of Higgs isocrystals, which are introduced to replace the notion of Higgs bundles. The link between these two notions uses Higgs envelopes and calls to mind the link between classical crystals and modules with integrable connections. After discussing Higgs isocrystals and Higgs crystals, cohomology of Higgs isocrystals, and representations of the fundamental group, the chapter presents the main result: the construction of a fully faithful functor from the category of Higgs (iso)crystals satisfying an overconvergence condition to that of small generalized representations. It also proves the compatibility of this functor with the natural cohomologies and concludes by comparing the cohomology of Higgs isocrystals with Faltings cohomology.



2009 ◽  
Vol 145 (1) ◽  
pp. 247-270 ◽  
Author(s):  
Tobias Schmidt

AbstractGiven a compactp-adic Lie groupGover a finite unramified extensionL/ℚplet GL/ℚpbe the product over all Galois conjugates ofG. We construct an exact and faithful functor from admissibleG-Banach space representations to admissible locallyL-analyticGL/ℚp-representations that coincides with passage to analytic vectors in the caseL=ℚp. On the other hand, we study the functor ‘passage to analytic vectors’ and its derived functors over general basefields. As an application we compute the higher analytic vectors in certain locally analytic induced representations.



2005 ◽  
Vol 15 (04) ◽  
pp. 683-698 ◽  
Author(s):  
VICTORIA GOULD ◽  
MARK KAMBITES

We prove that any small cancellative category admits a faithful functor to a cancellative monoid. We use our result to show that any primitive ample semigroup is a full subsemigroup of a Rees matrix semigroup [Formula: see text] where M is a cancellative monoid and P is the identity matrix. On the other hand a consequence of a recent result of Steinberg is that it is undecidable whether a finite ample semigroup embeds as a full subsemigroup of an inverse semigroup.



Sign in / Sign up

Export Citation Format

Share Document