magnetron motion
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
M. Aker ◽  
K. Altenmüller ◽  
A. Beglarian ◽  
J. Behrens ◽  
A. Berlev ◽  
...  

AbstractThe KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c$$^2$$ 2 by precisely measuring the endpoint region of the tritium $$\beta $$ β -decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.


2016 ◽  
Author(s):  
Kermit K. Murray ◽  
Robert K. Boyd ◽  
Marcos N. Eberlin ◽  
G. John Langley ◽  
Liang Li ◽  
...  
Keyword(s):  

2015 ◽  
Vol 26 (8) ◽  
pp. 1349-1366 ◽  
Author(s):  
Roland Jertz ◽  
Jochen Friedrich ◽  
Claudia Kriete ◽  
Evgeny N. Nikolaev ◽  
Gökhan Baykut

1998 ◽  
Vol 67 (2) ◽  
pp. 235-239 ◽  
Author(s):  
M. Yan ◽  
X. Luo ◽  
X. Zhu

Sign in / Sign up

Export Citation Format

Share Document