Buffer-gas-free mass-selective ion centering in Penning traps by simultaneous dipolar excitation of magnetron motion and quadrupolar excitation for interconversion between magnetron and cyclotron motion

2012 ◽  
Vol 325-327 ◽  
pp. 51-57 ◽  
Author(s):  
M. Rosenbusch ◽  
K. Blaum ◽  
Ch. Borgmann ◽  
S. Kreim ◽  
M. Kretzschmar ◽  
...  
2006 ◽  
Vol 20 (11n13) ◽  
pp. 1699-1710 ◽  
Author(s):  
G. CIARAMICOLI ◽  
I. MARZOLI ◽  
P. TOMBESI

We present an in-depth analysis of a potentially significant source of decoherence for a quantum processor, we proposed in our previous paper.1 The processor consists of an array of charged particles confined in planar micro-Penning traps. Qubits are encoded in the particle spins, that are mutually coupled as nuclear spins in a nuclear magnetic resonance-molecule. In this paper, we study in detail the de-phasing effect on the qubit dynamics produced by thermal excitations in the cyclotron motion of the particles.


2009 ◽  
Vol 15 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Franklin Martinez ◽  
Alexander Herlert ◽  
Gerrit Marx ◽  
Lutz Schweikhard ◽  
Noelle Walsh

Azimuthal quadrupolar excitation is a commonly used technique in the field of ion cyclotron resonance mass spectrometry, in particular in combination with buffer-gas collisions to achieve axialization of the stored ions. If the quadrupolar excitation is applied with only one phase to a set of two opposing ring segments (rather than the “regular” method where two sets of electrodes are addressed with opposite polarities), parametric resonance effects at the frequencies 2μ z and μp = μ+ – μ– can lead to unintended ejection of ions from the trap. These parametric resonances have been revisited both theoretically and experimentally: multipole components of different azimuthal excitation schemes are derived by a simple vector representation of the excitation signal applied to the ring segments. Thus, parametric contributions can be easily identified, as demonstrated for the two-electrode and the four-electrode quadrupolar excitation schemes as well as further examples. In addition, the effect of the single-phase two-electrode quadrupolar excitation is demonstrated for storage and axialization of cluster ions.


1993 ◽  
Author(s):  
Gerald Gabrielse
Keyword(s):  

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
John R. Daniel ◽  
Chen Wang ◽  
Kayla Rodriguez ◽  
Boerge Hemmerling ◽  
Taylor N. Lewis ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1065
Author(s):  
Houssem Eddine Nechmi ◽  
Michail Michelarakis ◽  
Abderrahmane (Manu) Haddad ◽  
Gordon Wilson

Negative and positive partial discharge inception voltages and breakdown measurements are reported in a needle-plane electrode system as a function of pressure under AC voltage for natural gases (N2, CO2, and O2/CO2), pure NovecTM gases (C4F7N and C5F10O) and NovecTM in different natural gas admixtures. For compressed 4% C4F7N–96% CO2 and 6% C5F10O–12% O2–82% CO2 gas mixtures, the positive-streamer mode is identified as the breakdown mechanism. Breakdown and negative partial discharge inception voltages of 6% C5F10O–12% O2–82% CO2 are higher than those of 4% C4F7N–96% CO2. At 8.8 bar abs, the breakdown voltage of 6% C5F10O–12% O2–82% CO2 is equal to that of 12.77% O2–87.23% CO2 (buffer gas). Synergism in negative partial discharge inception voltage/electric field fits with the mean value and the sum of each partial pressure individually component for a 20% C4F7N–80% CO2 and 6% C5F10O–12% O2–82% CO2, respectively. In 9% C4F7N–91% CO2, the comparison of partial discharge inception electric fields is Emax (CO2) = Emax(C4F7N), and Emax (12.77% O2–87.23% CO2) = Emax(C5F10O) in 19% C5F10O–81%(12.77% O2–87.23% CO2). Polarity reversal occurs under AC voltage when the breakdown polarity changes from negative to positive cycle. Polarity reversal electric field EPR was quantified. Fitting results show that EPR (CO2) = EPR(9% C4F7N–91% CO2) and EPR(SF6) = EPR (22% C4F7N–78% CO2). EPR (4% C4F7N–96% CO2) = EPR (12.77% O2–87.23% CO2) and EPR (6% C5F10O–12% O2–82% CO2) < EPR (4% C4F7N–96% CO2) < EPR (CO2).


Author(s):  
Feng Wang ◽  
Lanbo Wang ◽  
She Chen ◽  
Qiuqin Sun ◽  
Lipeng Zhong ◽  
...  

2020 ◽  
Vol 234 (7-9) ◽  
pp. 1233-1250 ◽  
Author(s):  
Arrke J. Eskola ◽  
Mark A. Blitz ◽  
Michael J. Pilling ◽  
Paul W. Seakins ◽  
Robin J. Shannon

AbstractThe rate coefficient for the unimolecular decomposition of CH3OCH2, k1, has been measured in time-resolved experiments by monitoring the HCHO product. CH3OCH2 was rapidly and cleanly generated by 248 nm excimer photolysis of oxalyl chloride, (ClCO)2, in an excess of CH3OCH3, and an excimer pumped dye laser tuned to 353.16 nm was used to probe HCHO via laser induced fluorescence. k1(T,p) was measured over the ranges: 573–673 K and 0.1–4.3 × 1018 molecule cm−3 with a helium bath gas. In addition, some experiments were carried out with nitrogen as the bath gas. Ab initio calculations on CH3OCH2 decomposition were carried out and a transition-state for decomposition to CH3 and H2CO was identified. This information was used in a master equation rate calculation, using the MESMER code, where the zero-point-energy corrected barrier to reaction, ΔE0,1, and the energy transfer parameters, ⟨ΔEdown⟩ × Tn, were the adjusted parameters to best fit the experimental data, with helium as the buffer gas. The data were combined with earlier measurements by Loucks and Laidler (Can J. Chem.1967, 45, 2767), with dimethyl ether as the third body, reinterpreted using current literature for the rate coefficient for recombination of CH3OCH2. This analysis returned ΔE0,1 = (112.3 ± 0.6) kJ mol−1, and leads to $k_{1}^{\infty}(T)=2.9\times{10^{12}}$ (T/300)2.5 exp(−106.8 kJ mol−1/RT). Using this model, limited experiments with nitrogen as the bath gas allowed N2 energy transfer parameters to be identified and then further MESMER simulations were carried out, where N2 was the buffer gas, to generate k1(T,p) over a wide range of conditions: 300–1000 K and N2 = 1012–1025 molecule cm−3. The resulting k1(T,p) has been parameterized using a Troe-expression, so that they can be readily be incorporated into combustion models. In addition, k1(T,p) has been parametrized using PLOG for the buffer gases, He, CH3OCH3 and N2.


Sign in / Sign up

Export Citation Format

Share Document