type iib string theory
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Mehmet Demirtas ◽  
Manki Kim ◽  
Liam McAllister ◽  
Jakob Moritz ◽  
Andres Rios-Tascon

Abstract We construct supersymmetric AdS4 vacua of type IIB string theory in compactifications on orientifolds of Calabi-Yau threefold hypersurfaces. We first find explicit orientifolds and quantized fluxes for which the superpotential takes the form proposed by Kachru, Kallosh, Linde, and Trivedi. Given very mild assumptions on the numerical values of the Pfaffians, these compactifications admit vacua in which all moduli are stabilized at weak string coupling. By computing high-degree Gopakumar-Vafa invariants we give strong evidence that the α′ expansion is likewise well-controlled. We find extremely small cosmological constants, with magnitude < 10−123 in Planck units. The compactifications are large, but not exponentially so, and hence these vacua manifest hierarchical scale-separation, with the AdS length exceeding the Kaluza-Klein length by a factor of a googol.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Sergei Alexandrov ◽  
Ashoke Sen ◽  
Bogdan Stefański

Abstract We compute the contribution of Euclidean D-branes in type IIB string theory on Calabi-Yau threefolds to the metric on the hypermultiplet moduli space in the large volume, weak coupling limit. Our results are in perfect agreement with the predictions based on S-duality, mirror symmetry and supersymmetry.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Matthew Buican ◽  
Hongliang Jiang

Abstract We systematically study 4D $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) that can be constructed via type IIB string theory on isolated hypersurface singularities (IHSs) embedded in ℂ4. We show that if a theory in this class has no $$ \mathcal{N} $$ N = 2-preserving exactly marginal deformation (i.e., the theory is isolated as an $$ \mathcal{N} $$ N = 2 SCFT), then it has no 1-form symmetry. This situation is somewhat reminiscent of 1-form symmetry and decomposition in 2D quantum field theory. Moreover, our result suggests that, for theories arising from IHSs, 1-form symmetries originate from gauge groups (with vanishing beta functions). One corollary of our discussion is that there is no 1-form symmetry in IHS theories that have all Coulomb branch chiral ring generators of scaling dimension less than two. In terms of the a and c central charges, this condition implies that IHS theories satisfying $$ a<\frac{1}{24}\left(15r+2f\right) $$ a < 1 24 15 r + 2 f and $$ c<\frac{1}{6}\left(3r+f\right) $$ c < 1 6 3 r + f (where r is the complex dimension of the Coulomb branch, and f is the rank of the continuous 0-form flavor symmetry) have no 1-form symmetry. After reviewing the 1-form symmetries of other classes of theories, we are motivated to conjecture that general interacting 4D $$ \mathcal{N} $$ N = 2 SCFTs with all Coulomb branch chiral ring generators of dimension less than two have no 1-form symmetry.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Tobias Hansen

Abstract We study the stress tensor four-point function for $$ \mathcal{N} $$ N = 4 SYM with gauge group G = SU(N), SO(2N + 1), SO(2N) or USp(2N) at large N . When G = SU(N), the theory is dual to type IIB string theory on AdS5× S5 with complexified string coupling τs, while for the other cases it is dual to the orbifold theory on AdS5× S5/ℤ2. In all cases we use the analytic bootstrap and constraints from localization to compute 1-loop and higher derivative tree level corrections to the leading supergravity approximation of the correlator. We give perturbative evidence that the localization constraint in the large N and finite complexified coupling τ limit can be written for each G in terms of Eisenstein series that are modular invariant in terms of τs ∝ τ, which allows us to fix protected terms in the correlator in that limit. In all cases, we find that the flat space limit of the correlator precisely matches the type IIB S-matrix. We also find a closed form expression for the SU(N) 1-loop Mellin amplitude with supergravity vertices. Finally, we compare our analytic predictions at large N and finite τ to bounds from the numerical bootstrap in the large N regime, and find that they are not saturated for any G and any τ , which suggests that no physical theory saturates these bootstrap bounds.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ashoke Sen

Abstract We compute the normalization of single D-instanton amplitudes in type IIB string theory and show that the result agrees with the prediction of S-duality due to Green and Gutperle.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Fabio Apruzzi ◽  
G. Bruno De Luca ◽  
Gabriele Lo Monaco ◽  
Christoph F. Uhlemann

Abstract We discuss infinite families of non-supersymmetric AdS6 solutions in Type IIB string theory. They are siblings of supersymmetric solutions which are associated with (p, q) 5-brane webs and holographically dual to 5d SCFTs engineered by those brane webs. The non-supersymmetric backgrounds carry identical 5-brane charges and are connected to the supersymmetric ones by RG flows. We study the stability of the non-supersymmetric solutions, identifying perturbative and non-perturbative decay channels for all the backgrounds explicitly available. We also identify likely decay mechanisms for solutions that have not been constructed explicitly but may be expected to exist based on brane web considerations. Finally, we exclude scale separation by constructing universal spin 2 modes with masses comparable to the mass-scale of the cosmological constant.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ashoke Sen

Abstract We compute the normalization of the multiple D-instanton amplitudes in type IIB string theory and show that the result agrees with the prediction of S-duality due to Green and Gutperle.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Mark Van Raamsdonk ◽  
Chris Waddell

Abstract We study solutions of type IIB string theory dual to $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory on half of ℝ3,1 coupled to holographic three-dimensional superconformal field theories (SCFTs) at the edge of this half-space. The dual geometries are asymptotically AdS5×S5 with boundary geometry ℝ2,1×ℝ+, with a geometrical end-of-the-world (ETW) brane cutting off the other half of the asymptotic region of the would-be Poincaré AdS5×S5. We show that by choosing the 3D SCFT appropriately, this ETW brane can be pushed arbitrarily far towards the missing asymptotic region, recovering the “missing” half of Poincaré AdS5×S5. We also show that there are 3D SCFTs whose dual includes a wedge of Poincaré AdS5×S5 with an angle arbitrarily close to π, with geometrical ETW branes on either side.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Simone Giombi ◽  
Bendeguz Offertaler

Abstract We study the half-BPS circular Wilson loop in $$ \mathcal{N} $$ N = 4 super Yang-Mills with orthogonal gauge group. By supersymmetric localization, its expectation value can be computed exactly from a matrix integral over the Lie algebra of SO(N). We focus on the large N limit and present some simple quantitative tests of the duality with type IIB string theory in AdS5× ℝℙ5. In particular, we show that the strong coupling limit of the expectation value of the Wilson loop in the spinor representation of the gauge group precisely matches the classical action of the dual string theory object, which is expected to be a D5-brane wrapping a ℝℙ4 subspace of ℝℙ5. We also briefly discuss the large N, large λ limits of the SO(N) Wilson loop in the symmetric/antisymmetric representations and their D3/D5-brane duals. Finally, we use the D5-brane description to extract the leading strong coupling behavior of the “bremsstrahlung function” associated to a spinor probe charge, or equivalently the normalization of the two-point function of the displacement operator on the spinor Wilson loop, and obtain agreement with the localization prediction.


Sign in / Sign up

Export Citation Format

Share Document