scholarly journals 1-form symmetry, isolated $$ \mathcal{N} $$ = 2 SCFTs, and Calabi-Yau threefolds

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Matthew Buican ◽  
Hongliang Jiang

Abstract We systematically study 4D $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) that can be constructed via type IIB string theory on isolated hypersurface singularities (IHSs) embedded in ℂ4. We show that if a theory in this class has no $$ \mathcal{N} $$ N = 2-preserving exactly marginal deformation (i.e., the theory is isolated as an $$ \mathcal{N} $$ N = 2 SCFT), then it has no 1-form symmetry. This situation is somewhat reminiscent of 1-form symmetry and decomposition in 2D quantum field theory. Moreover, our result suggests that, for theories arising from IHSs, 1-form symmetries originate from gauge groups (with vanishing beta functions). One corollary of our discussion is that there is no 1-form symmetry in IHS theories that have all Coulomb branch chiral ring generators of scaling dimension less than two. In terms of the a and c central charges, this condition implies that IHS theories satisfying $$ a<\frac{1}{24}\left(15r+2f\right) $$ a < 1 24 15 r + 2 f and $$ c<\frac{1}{6}\left(3r+f\right) $$ c < 1 6 3 r + f (where r is the complex dimension of the Coulomb branch, and f is the rank of the continuous 0-form flavor symmetry) have no 1-form symmetry. After reviewing the 1-form symmetries of other classes of theories, we are motivated to conjecture that general interacting 4D $$ \mathcal{N} $$ N = 2 SCFTs with all Coulomb branch chiral ring generators of dimension less than two have no 1-form symmetry.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Emanuele Beratto ◽  
Simone Giacomelli ◽  
Noppadol Mekareeya ◽  
Matteo Sacchi

Abstract Mirror symmetry has proven to be a powerful tool to study several properties of higher dimensional superconformal field theories upon compactification to three dimensions. We propose a quiver description for the mirror theories of the circle reduction of twisted A2N theories of class S in four dimensions. Although these quivers bear a resemblance to the star-shaped quivers previously studied in the literature, they contain unitary, symplectic and special orthogonal gauge groups, along with hypermultiplets in the fundamental representation. The vacuum moduli spaces of these quiver theories are studied in detail. The Coulomb branch Hilbert series of the mirror theory can be matched with that of the Higgs branch of the corresponding four dimensional theory, providing a non-trivial check of our proposal. Moreover various deformations by mass and Fayet-Iliopoulos terms of such quiver theories are investigated. The fact that several of them flow to expected theories also gives another strong support for the proposal. Utilising the mirror quiver description, we discover a new supersymmetry enhancement renormalisation group flow.


2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Philip Argyres ◽  
Antoine Bourget ◽  
Mario Martone

We classify orbifold geometries which can be interpreted as moduli spaces of four-dimensional \mathcal{N}\geq 3𝒩≥3 superconformal field theories up to rank 2 (complex dimension 6). The large majority of the geometries we find correspond to moduli spaces of known theories or discretely gauged version of them. Remarkably, we find 6 geometries which are not realized by any known theory, of which 3 have an \mathcal{N}=2𝒩=2 Coulomb branch slice with a non-freely generated coordinate ring, suggesting the existence of new, exotic \mathcal{N}=3𝒩=3 theories.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Cyril Closset ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Five- and four-dimensional superconformal field theories with eight supercharges arise from canonical threefold singularities in M-theory and Type IIB string theory, respectively. We study their Coulomb and Higgs branches using crepant resolutions and deformations of the singularities. We propose a relation between the resulting moduli spaces, by compactifying the theories to 3d, followed by 3d $$ \mathcal{N} $$ N = 4 mirror symmetry and an S-type gauging of an abelian flavor symmetry. In particular, we use this correspondence to determine the Higgs branch of some 5d SCFTs and their magnetic quivers from the geometry. As an application of the general framework, we observe that singularities that engineer Argyres-Douglas theories in Type IIB also give rise to rank-0 5d SCFTs in M-theory. We also compute the higher-form symmetries of the 4d and 5d SCFTs, including the one-form symmetries of generalized Argyres-Douglas theories of type (G, G′).


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Nathan Haouzi ◽  
Can Kozçaz

Abstract Starting from type IIB string theory on an ADE singularity, the (2, 0) little string arises when one takes the string coupling gs to 0. In this setup, we give a unified description of the codimension-two defects of the little string, labeled by a simple Lie algebra $$ \mathfrak{g} $$ g . Geometrically, these are D5 branes wrapping 2-cycles of the singularity, subject to a certain folding operation when the algebra is non simply-laced. Equivalently, the defects are specified by a certain set of weights of $$ {}^L\mathfrak{g} $$ L g , the Langlands dual of $$ \mathfrak{g} $$ g . As a first application, we show that the instanton partition function of the $$ \mathfrak{g} $$ g -type quiver gauge theory on the defect is equal to a 3-point conformal block of the $$ \mathfrak{g} $$ g -type deformed Toda theory in the Coulomb gas formalism. As a second application, we argue that in the (2, 0) CFT limit, the Coulomb branch of the defects flows to a nilpotent orbit of $$ \mathfrak{g} $$ g .


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract 5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in [1], which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Andreas P. Braun ◽  
Jin Chen ◽  
Babak Haghighat ◽  
Marcus Sperling ◽  
Shuhang Yang

Abstract We study circle compactifications of 6d superconformal field theories giving rise to 5d rank 1 and rank 2 Kaluza-Klein theories. We realise the resulting theories as M-theory compactifications on local Calabi-Yau 3-folds and match the prepotentials from geometry and field theory. One novelty in our approach is that we include explicit dependence on bare gauge couplings and mass parameters in the description which in turn leads to an accurate parametrisation of the prepotential including all parameters of the field theory. We find that the resulting geometries admit “fibre-base” duality which relates their six-dimensional origin with the purely five-dimensional quantum field theory interpretation. The fibre-base duality is realised simply by swapping base and fibre curves of compact surfaces in the local Calabi-Yau which can be viewed as the total space of the anti-canonical bundle over such surfaces. Our results show that such swappings precisely occur for surfaces with a zero self-intersection of the base curve and result in an exchange of the 6d and 5d pictures.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aleix Gimenez-Grau ◽  
Pedro Liendo

Abstract We apply the numerical conformal bootstrap to correlators of Coulomb and Higgs branch operators in 4d$$ \mathcal{N} $$ N = 2 superconformal theories. We start by revisiting previous results on single correlators of Coulomb branch operators. In particular, we present improved bounds on OPE coefficients for some selected Argyres-Douglas models, and compare them to recent work where the same cofficients were obtained in the limit of large r charge. There is solid agreement between all the approaches. The improved bounds can be used to extract an approximate spectrum of the Argyres-Douglas models, which can then be used as a guide in order to corner these theories to numerical islands in the space of conformal dimensions. When there is a flavor symmetry present, we complement the analysis by including mixed correlators of Coulomb branch operators and the moment map, a Higgs branch operator which sits in the same multiplet as the flavor current. After calculating the relevant superconformal blocks we apply the numerical machinery to the mixed system. We put general constraints on CFT data appearing in the new channels, with particular emphasis on the simplest Argyres-Douglas model with non-trivial flavor symmetry.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Kimyeong Lee

Abstract We explore 6d (1, 0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an E8 wall. Specifically, we study the 2d $$ \mathcal{N} $$ N = (0, 4) gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0, 4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dual strings in 6d E-string theory for multiple M5-branes probing the E8 wall, and find their fully refined elliptic genera.


Sign in / Sign up

Export Citation Format

Share Document