polymer recycling
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 23)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 463-485
Author(s):  
K. Norfaryanti ◽  
Z.M.A. Ainun
Keyword(s):  

2021 ◽  
Author(s):  
jeremy demarteau ◽  
alexander epstein ◽  
Peter Christensen ◽  
Mark Abubekerov ◽  
hai wang ◽  
...  

<div>Footwear, carpet, soft furnishings, automotive interiors, and multi-layer packaging are examples of products manufactured from several types of polymers whose inextricability poses significant challenges for recycling at end-of-life. Here, we show that chemical circularity in mixed-polymer recycling becomes possible by controlling the rates of depolymerization of polydiketoenamines (PDKs) over several orders of magnitude through molecular engineering. Stepwise deconstruction of mixed-PDK composites, laminates, and assemblies is chemospecific, allowing a prescribed subset of monomers, fillers, and additives to be recovered in pristine condition at each stage of the recycling process. We provide a theoretical framework to understand PDK depolymerization via acid-catalyzed hydrolysis and experimentally validate trends predicted for the rate-limiting step. The control achieved by PDKs in managing thermal and materials entropy points to new opportunities for pairing circular design with sustainable manufacturing.</div>


2021 ◽  
Author(s):  
jeremy demarteau ◽  
alexander epstein ◽  
Peter Christensen ◽  
Mark Abubekerov ◽  
hai wang ◽  
...  

<div>Footwear, carpet, soft furnishings, automotive interiors, and multi-layer packaging are examples of products manufactured from several types of polymers whose inextricability poses significant challenges for recycling at end-of-life. Here, we show that chemical circularity in mixed-polymer recycling becomes possible by controlling the rates of depolymerization of polydiketoenamines (PDKs) over several orders of magnitude through molecular engineering. Stepwise deconstruction of mixed-PDK composites, laminates, and assemblies is chemospecific, allowing a prescribed subset of monomers, fillers, and additives to be recovered in pristine condition at each stage of the recycling process. We provide a theoretical framework to understand PDK depolymerization via acid-catalyzed hydrolysis and experimentally validate trends predicted for the rate-limiting step. The control achieved by PDKs in managing thermal and materials entropy points to new opportunities for pairing circular design with sustainable manufacturing.</div>


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Athena Maniadi

Polymer recycling is nowadays in high-demand due to an increase in polymers demand and production. Recycling of such materials is mostly a thermomechanical process that modifies their overall mechanical behavior. The present research work focuses on the recyclability of high-density polyethylene (HDPE), one of the most recycled materials globally, for use in additive manufacturing (AM). A thorough investigation was carried out to determine the effect of the continuous recycling on mechanical, structural, and thermal responses of HDPE polymer via a process that isolates the thermomechanical treatment from other parameters such as aging, contamination, etc. Fused filament fabrication (FFF) specimens were produced from virgin and recycled materials and were experimentally tested and evaluated in tension, flexion, impact, and micro-hardness. A thorough thermal and morphological analysis was also performed. The overall results of this study show that the mechanical properties of the recycled HDPE polymer were generally improved over the recycling repetitions for a certain number of recycling steps, making the HDPE recycling a viable option for circular use. Repetitions two to five had the optimum overall mechanical behavior, indicating a significant positive impact of the HDPE polymer recycling aside from the environmental one.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiří Vohlídal

AbstractThe reader will find basic knowledge about the degradation of polymers, its causes, course and consequences in a broader context, as indicated through the list of the chapter titles: Introduction; Depolymerization; Initiated cleavage (degradation) of macromolecules; Thermal degradation; Photochemical degradation; Mechanochemical degradation; Oxidative degradation; Polymer burning; Kinetics of cleaving macromolecules when chain depolymerization is negligible; Degradation in polymer recycling; Protection of polymers against degradation.


Sign in / Sign up

Export Citation Format

Share Document