Towards sustainable additive manufacturing: The need for awareness of particle and vapor releases during polymer recycling, making filament, and fused filament fabrication 3-D printing

2022 ◽  
Vol 176 ◽  
pp. 105911
Author(s):  
Aleksandr B. Stefaniak ◽  
Lauren N. Bowers ◽  
Gabe Cottrell ◽  
Ergin Erdem ◽  
Alycia K. Knepp ◽  
...  
Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Athena Maniadi

Polymer recycling is nowadays in high-demand due to an increase in polymers demand and production. Recycling of such materials is mostly a thermomechanical process that modifies their overall mechanical behavior. The present research work focuses on the recyclability of high-density polyethylene (HDPE), one of the most recycled materials globally, for use in additive manufacturing (AM). A thorough investigation was carried out to determine the effect of the continuous recycling on mechanical, structural, and thermal responses of HDPE polymer via a process that isolates the thermomechanical treatment from other parameters such as aging, contamination, etc. Fused filament fabrication (FFF) specimens were produced from virgin and recycled materials and were experimentally tested and evaluated in tension, flexion, impact, and micro-hardness. A thorough thermal and morphological analysis was also performed. The overall results of this study show that the mechanical properties of the recycled HDPE polymer were generally improved over the recycling repetitions for a certain number of recycling steps, making the HDPE recycling a viable option for circular use. Repetitions two to five had the optimum overall mechanical behavior, indicating a significant positive impact of the HDPE polymer recycling aside from the environmental one.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4254
Author(s):  
Paulina A. Quiñonez ◽  
Leticia Ugarte-Sanchez ◽  
Diego Bermudez ◽  
Paulina Chinolla ◽  
Rhyan Dueck ◽  
...  

The work presented here describes a paradigm for the design of materials for additive manufacturing platforms based on taking advantage of unique physical properties imparted upon the material by the fabrication process. We sought to further investigate past work with binary shape memory polymer blends, which indicated that phase texturization caused by the fused filament fabrication (FFF) process enhanced shape memory properties. In this work, two multi-constituent shape memory polymer systems were developed where the miscibility parameter was the guide in material selection. A comparison with injection molded specimens was also carried out to further investigate the ability of the FFF process to enable enhanced shape memory characteristics as compared to other manufacturing methods. It was found that blend combinations with more closely matching miscibility parameters were more apt at yielding reliable shape memory polymer systems. However, when miscibility parameters differed, a pathway towards the creation of shape memory polymer systems capable of maintaining more than one temporary shape at a time was potentially realized. Additional aspects related to impact modifying of rigid thermoplastics as well as thermomechanical processing on induced crystallinity are also explored. Overall, this work serves as another example in the advancement of additive manufacturing via materials development.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Author(s):  
AIL Pais ◽  
C Silva ◽  
MC Marques ◽  
JL Alves ◽  
J Belinha

The aim of this work is the development of a novel framework for structural optimization using bio-inspired remodelling algorithm adapted to additive manufacturing. The fact that polylactic acid (PLA, E = 3145 MPa (Young’s modulus) according to the supplier for parts obtained by injection) shows a similar parameterized behavior with ductile metals, in the sense that both materials are characterized by a bi-linear elastic-plastic law, allows to simulate and prototype parts to be further constructed in ductile metals at a lower cost and then be produced with more expensive fabrication processes. Moreover, cellular materials allow for a significant weight reduction and therefore reduction of production costs. Structural optimization algorithms based on biological phenomena were used to determine the density distribution of the infill density of the specimens. Several simple structures were submitted to distinct complex load cases and analyzed using the mentioned optimization algorithms combined with the finite element method and a meshless method. The surface was divided according to similar density and then converted to stereolitography files and infilled with the gyroid structure at the desired density determined before, using open-source slicing software. Smoothing functions were used to smooth the density field obtained with the remodeling algorithms. The samples were printed with fused filament fabrication technology and submitted to mechanical flexural tests similar to the ones analyzed analytically, namely three- and four-point bending tests. Thus, the factors of analysis were the smoothing parameter and the remodeling method, and the responses evaluated were stiffness, specific stiffness, maximum force, and mass. The experimental results correlated (obtaining accuracy of 35% for the three-point bending load case and 5% for the four-point bending load case) to the numerical results in terms of flexural stiffness and it was found that the complexity of the load case is relevant for the efficiency of the functional gradient. The fused filament fabrication process is still not accurate enough to be able to experimentally compare the results based of finite element method and meshless method analyses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. H. Carneiro ◽  
S. D. Rawson ◽  
H . Puga ◽  
P. J. Withers

AbstractCellular materials are recognized for their high specific mechanical properties, making them desirable in ultra-lightweight applications. Periodic lattices have tunable properties and may be manufactured by metallic additive manufacturing (AM) techniques. However, AM can lead to issues with un-melted powder, macro/micro porosity, dimensional control and heterogeneous microstructures. This study overcomes these problems through a novel technique, combining additive manufacturing and investment casting to produce detailed investment cast lattice structures. Fused filament fabrication is used to fabricate a pattern used as the mold for the investment casting of aluminium A356 alloy into high-conformity thin-ribbed (~ 0.6 mm thickness) scaffolds. X-ray micro-computed tomography (CT) is used to characterize macro- and meso-scale defects. Optical and scanning electron (SEM) microscopies are used to characterize the microstructure of the cast structures. Slight dimensional (macroscale) variations originate from the 3D printing of the pattern. At the mesoscale, the casting process introduces very fine (~ 3 µm) porosity, along with small numbers of (~ 25 µm) gas entrapment defects in the horizontal struts. At a microstructural level, both the (~ 70 μm) globular/dendritic grains and secondary phases show no significant variations across the lattices. This method is a promising alternative means for producing highly detailed non-stochastic metallic cellular lattices and offers scope for further improvement through refinement of filament fabrication.


2021 ◽  
Vol 14 ◽  
Author(s):  
Aniket Yadav ◽  
Piyush Chohan ◽  
Ranvijay Kumar ◽  
Jasgurpreet Singh Chohan ◽  
Raman Kumar

Background: Additive manufacturing is the most famous technology which requires materials or composites to be fabricated with layer by layer deposition strategy. Due to its lower cost, higher accuracy and less material wastage; this technology is used in almost every sector. But in many applications there is a need to alter the properties of a product in a certain direction with the help of some reinforcements. With the use of reinforcements, composite layers can be fabricated using additive manufacturing technique which will enhance the directional properties. A novel apparatus is designed to spray the reinforcement material into the printed structures in a very neat and precise manner. This spray nozzle is fully automated, which works according to tool-paths generated by slicing software. The alternate deposition of layers of reinforcement and build materials helped to fabricate customized composite products. Objective: The objective of present study is to design and analyze the working principle of novel technique which has been developed to fabricate composite materials using additive manufacturing. The apparatus is numerically controlled by computer according to CAD data which facilitates the deposition of alternate layers of reinforcement and matrix material. The major challenges during the design process and function of each component has been explored. Methods: The design process is initiated after comprehensive literature review performed to study previous composite manufacturing processes. The recent patents published by different patent offices of the world are studied in detail and analysis has been used to design a low cost composite fabrication apparatus. A liquid dispensing device comprises a storage tank attached with a pump and microprocessor. The microprocessor receives the signal from the computer as per tool paths generated by slicing software which decides the spray of reinforcements on polymer layers. The spraying apparatus moves in coordination with the primary nozzle of the Fused Filament Fabrication process. Results: The hybridization of Fused Filament Fabrication [process with metal spray process has been successfully performed. The apparatus facilitates the fabrication of low cost composite materials along with flexibility of complete customization of composite manufacturing process. The anisotropic behaviour of products can be easily controlled and managed during fabrication which can be used for different applications.


Mechanik ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. 244-248
Author(s):  
Andrzej Zakręcki ◽  
Bartłomiej Gaczorek ◽  
Adrianna Kania ◽  
Katarzyna Berent

Described is the process of designing and manufacturing tubeless wheels for the Mars rover with structural infill by the AGH Space Systems scientific club, who will take part in the University Rover Challenge competition. Some of Mars rover subsystems’ are so unique hence they should be manufactured from the beginning. The algorithm for generating the structural infill has been proposed. The strength tests were conducted for the preliminary identification of material parameters, and their results were used in FEM strength analysis. Wheels have been made of polymers with fused filament fabrication (FFF) additive technology, and then applied in the KALMAN rover.


2021 ◽  
Vol 15 (4) ◽  
pp. 491-497
Author(s):  
Tomislav Breški ◽  
Lukas Hentschel ◽  
Damir Godec ◽  
Ivica Đuretek

Fused filament fabrication (FFF) is currently one of the most popular additive manufacturing processes due to its simplicity and low running and material costs. Support structures, which are necessary for overhanging surfaces during production, in most cases need to be manually removed and as such, they become waste material. In this paper, experimental approach is utilised in order to assess suitability of recycling support structures into recycled filament for FFF process. Mechanical properties of standardized specimens made from recycled polylactic acid (PLA) filament as well as influence of layer height and infill density on those properties were investigated. Optimal printing parameters for recycled PLA filaments are determined with Design of Experiment methods (DOE).


Sign in / Sign up

Export Citation Format

Share Document