optimal computing budget allocation
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 2)

Automatica ◽  
2021 ◽  
Vol 134 ◽  
pp. 109927
Author(s):  
Tianxiang Wang ◽  
Jie Xu ◽  
Jian-Qiang Hu ◽  
Chun-Hung Chen

Author(s):  
Mahmoud H. Alrefaei ◽  
Mohammad H. Almomani ◽  
Sarah N. Alabed Alhadi

Selecting a subset of the best solutions among large-scale problems is an important area of research. When the alternative solutions are stochastic in nature, then it puts more burden on the problem. The objective of this paper is to select a set that is likely to contain the actual best solutions with high probability. If the selected set contains all the best solutions, then the selection is denoted as correct selection. We are interested in maximizing the probability of this selection; P(CS). In many cases, the available computation budget for simulating the solution set in order to maximize P(CS) is limited. Therefore, instead of distributing these computational efforts equally likely among the alternatives, the optimal computing budget allocation (OCBA) procedure came to put more effort on the solutions that have more impact on the selected set. In this paper, we derive formulas of how to distribute the available budget asymptotically to find the approximation of P(CS). We then present a procedure that uses OCBA with the ordinal optimization (OO) in order to select the set of best solutions. The properties and performance of the proposed procedure are illustrated through a numerical example. Overall results indicate that the procedure is able to select a subset of the best systems with high probability of correct selection using small number of simulation samples under different parameter settings.


Author(s):  
Tianxiang Wang ◽  
Jie Xu ◽  
Jian-Qiang Hu

We consider how to allocate simulation budget to estimate the risk measure of a system in a two-stage simulation optimization problem. In this problem, the first stage simulation generates scenarios that serve as inputs to the second stage simulation. For each sampled first stage scenario, the second stage procedure solves a simulation optimization problem by evaluating a number of decisions and selecting the optimal decision for the scenario. It also provides the estimated performance of the system over all sampled first stage scenarios to estimate the system’s reliability or risk measure, which is defined as the probability of the system’s performance exceeding a given threshold under various scenarios. Usually, such a two-stage procedure is very computationally expensive. To address this challenge, we propose a simulation budget allocation procedure to improve the computational efficiency for two-stage simulation optimization. After generating first stage scenarios, a sequential allocation procedure selects the scenario to simulate, followed by an optimal computing budget allocation scheme that determines the decision to simulate in the second stage simulation. Numerical experiments show that the proposed procedure significantly improves the efficiency of the two-stage simulation optimization for estimating system’s reliability.


Sign in / Sign up

Export Citation Format

Share Document