scholarly journals Selecting the best stochastic systems for large scale engineering problems

Author(s):  
Mahmoud H. Alrefaei ◽  
Mohammad H. Almomani ◽  
Sarah N. Alabed Alhadi

Selecting a subset of the best solutions among large-scale problems is an important area of research. When the alternative solutions are stochastic in nature, then it puts more burden on the problem. The objective of this paper is to select a set that is likely to contain the actual best solutions with high probability. If the selected set contains all the best solutions, then the selection is denoted as correct selection. We are interested in maximizing the probability of this selection; P(CS). In many cases, the available computation budget for simulating the solution set in order to maximize P(CS) is limited. Therefore, instead of distributing these computational efforts equally likely among the alternatives, the optimal computing budget allocation (OCBA) procedure came to put more effort on the solutions that have more impact on the selected set. In this paper, we derive formulas of how to distribute the available budget asymptotically to find the approximation of P(CS). We then present a procedure that uses OCBA with the ordinal optimization (OO) in order to select the set of best solutions. The properties and performance of the proposed procedure are illustrated through a numerical example. Overall results indicate that the procedure is able to select a subset of the best systems with high probability of correct selection using small number of simulation samples under different parameter settings.

2020 ◽  
Vol 53 (2) ◽  
pp. 1862-1867
Author(s):  
Mahathi Anand ◽  
Abolfazl Lavaei ◽  
Majid Zamani

Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Hossam A. Gabbar ◽  
Ahmed M. Othman ◽  
Muhammad R. Abdussami

The evolving global landscape for electrical distribution and use created a need area for energy storage systems (ESS), making them among the fastest growing electrical power system products. A key element in any energy storage system is the capability to monitor, control, and optimize performance of an individual or multiple battery modules in an energy storage system and the ability to control the disconnection of the module(s) from the system in the event of abnormal conditions. This management scheme is known as “battery management system (BMS)”, which is one of the essential units in electrical equipment. BMS reacts with external events, as well with as an internal event. It is used to improve the battery performance with proper safety measures within a system. Therefore, a safe BMS is the prerequisite for operating an electrical system. This report analyzes the details of BMS for electric transportation and large-scale (stationary) energy storage. The analysis includes different aspects of BMS covering testing, component, functionalities, topology, operation, architecture, and BMS safety aspects. Additionally, current related standards and codes related to BMS are also reviewed. The report investigates BMS safety aspects, battery technology, regulation needs, and offer recommendations. It further studies current gaps in respect to the safety requirements and performance requirements of BMS by focusing mainly on the electric transportation and stationary application. The report further provides a framework for developing a new standard on BMS, especially on BMS safety and operational risk. In conclusion, four main areas of (1) BMS construction, (2) Operation Parameters, (3) BMS Integration, and (4) Installation for improvement of BMS safety and performance are identified, and detailed recommendations were provided for each area. It is recommended that a technical review of the BMS be performed for transportation electrification and large-scale (stationary) applications. A comprehensive evaluation of the components, architectures, and safety risks applicable to BMS operation is also presented.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 146
Author(s):  
Aleksei Vakhnin ◽  
Evgenii Sopov

Modern real-valued optimization problems are complex and high-dimensional, and they are known as “large-scale global optimization (LSGO)” problems. Classic evolutionary algorithms (EAs) perform poorly on this class of problems because of the curse of dimensionality. Cooperative Coevolution (CC) is a high-performed framework for performing the decomposition of large-scale problems into smaller and easier subproblems by grouping objective variables. The efficiency of CC strongly depends on the size of groups and the grouping approach. In this study, an improved CC (iCC) approach for solving LSGO problems has been proposed and investigated. iCC changes the number of variables in subcomponents dynamically during the optimization process. The SHADE algorithm is used as a subcomponent optimizer. We have investigated the performance of iCC-SHADE and CC-SHADE on fifteen problems from the LSGO CEC’13 benchmark set provided by the IEEE Congress of Evolutionary Computation. The results of numerical experiments have shown that iCC-SHADE outperforms, on average, CC-SHADE with a fixed number of subcomponents. Also, we have compared iCC-SHADE with some state-of-the-art LSGO metaheuristics. The experimental results have shown that the proposed algorithm is competitive with other efficient metaheuristics.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 389-395 ◽  
Author(s):  
Ralph E.H. Sims

AbstractSome forms of renewable energy have long contributed to electricity generation, whereas others are just emerging. For example, large-scale hydropower is a mature technology generating about 16% of global electricity, and many smaller scale systems are also being installed worldwide. Future opportunities to improve the technology are limited but include upgrading of existing plants to gain greater performance efficiencies and reduced maintenance. Geothermal energy, widely used for power generation and direct heat applications, is also mature, but new technologies could improve plant designs, extend their lifetimes, and improve reliability. By contrast, ocean energy is an emerging renewable energy technology. Design, development, and testing of a myriad of devices remain mainly in the research and development stage, with many opportunities for materials science to improve design and performance, reduce costly maintenance procedures, and extend plant operating lifetimes under the harsh marine environment.


2011 ◽  
Vol 204-210 ◽  
pp. 2196-2201
Author(s):  
Yan Tao Jiang ◽  
Si Tian Chen ◽  
Cheng Hua Li

In this paper, the fast multipole virtual boundary element - least square method (Fast Multipole VBE - LSM) is proposed and used to simulate 2-D elastic problems, which is based on the fast multipole method (FMM) and virtual boundary element - least square method (VBE - LSM).The main idea of the method is to change computational model by applying the FMM to conventional VBE - LSM. The memory and operations could be reduced to be of linear proportion to the degree of freedom (DOF) and large scale problems could be effectively solved on a common desktop with this method. Numerical results show that this method holds virtues of high feasibility, accuracy and efficiency. Moreover, the idea of this method can be generalized and extended in application.


Sign in / Sign up

Export Citation Format

Share Document