nucleolus organizer region
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 14)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kyle Fletcher ◽  
Oon-Ha Shin ◽  
Kelley J. Clark ◽  
Chunda Feng ◽  
Alexander I. Putman ◽  
...  

AbstractWe report the first telomere-to-telomere genome assembly for an oomycete. This assembly has extensive synteny with less complete genome assemblies of other oomycetes and will therefore serve as a reference genome for this taxon. Downy mildew disease of spinach, caused by the oomycete Peronospora effusa, causes major losses to spinach production. The 17 chromosomes of P. effusa were assembled telomere-to-telomere using Pacific Biosciences High Fidelity reads. Sixteen chromosomes are complete and gapless; Chromosome 15 contains one gap bridging the nucleolus organizer region. Putative centromeres were identified on all chromosomes. This new assembly enables a re-evaluation of the genomic composition of Peronospora spp.; the assembly was almost double the size and contained more repeat sequences than previously reported for any Peronospora spp. Genome fragments consistently under-represented in six previously reported assemblies of P. effusa typically encoded repeats. Some genes annotated as encoding effectors were organized into multigene clusters on several chromosomes. At least two effector-encoding genes were annotated on every chromosome. The intergenic distances between annotated genes were consistent with the two-speed genome hypothesis, with some effectors located in gene-sparse regions. The near-gapless assembly revealed apparent horizontal gene transfer from Ascomycete fungi. Gene order was highly conserved between P. effusa and the genetically oriented assembly of the oomycete Bremia lactucae. High levels of synteny were also detected with Phytophthora sojae. Many oomycete species may have similar chromosome organization; therefore, this genome assembly provides the foundation for genomic analyses of diverse oomycetes.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2551
Author(s):  
Agnese Petraccioli ◽  
Paolo Crovato ◽  
Fabio Guarino ◽  
Marcello Mezzasalma ◽  
Gaetano Odierna ◽  
...  

We performed a molecular and a comparative cytogenetic analysis on different Helicoidea species and a review of all the available chromosome data on the superfamily to provide an updated assessment of its karyological diversity. Standard karyotyping, banding techniques, and Fluorescence in situ hybridization of Nucleolus Organizer Region loci (NOR-FISH) were performed on fifteen species of three families: two Geomitridae, four Hygromiidae and nine Helicidae. The karyotypes of the studied species varied from 2n = 44 to 2n = 60, highlighting a high karyological diversity. NORs were on a single chromosome pair in Cernuella virgata and on multiple pairs in four Helicidae, representing ancestral and derived conditions, respectively. Heterochromatic C-bands were found on pericentromeric regions of few chromosomes, being Q- and 4′,6-diamidino-2-phenylindole (DAPI) negative. NOR-associated heterochromatin was C-banding and chromomycin A3 (CMA3) positive. Considering the available karyological evidence on Helicoidea and superimposing the chromosome data gathered from different sources on available phylogenetic inferences, we describe a karyotype of 2n = 60 with all biarmed elements as the ancestral state in the superfamily. From this condition, an accumulation of chromosome translocations led to karyotypes with a lower chromosome number (2n = 50–44). This process occurred independently in different lineages, while an augment of the chromosome number was detectable in Polygyridae. Chromosome inversions were also relevant chromosome rearrangements in Helicoidea, leading to the formation of telocentric elements in karyotypes with a relatively low chromosome count.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yumin Huang ◽  
Wei Huang ◽  
Zhuang Meng ◽  
Guilherme Tomaz Braz ◽  
Yunfei Li ◽  
...  

Abstract Background Structural variants (SVs) significantly drive genome diversity and environmental adaptation for diverse species. Unlike the prevalent small SVs (< kilobase-scale) in higher eukaryotes, large-size SVs rarely exist in the genome, but they function as one of the key evolutionary forces for speciation and adaptation. Results In this study, we discover and characterize several megabase-scale presence-absence variations (PAVs) in the maize genome. Surprisingly, we identify a 3.2 Mb PAV fragment that shows high integrity and is present as complete presence or absence in the natural diversity panel. This PAV is embedded within the nucleolus organizer region (NOR), where the suppressed recombination is found to maintain the PAV against the evolutionary variation. Interestingly, by analyzing the sequence of this PAV, we not only reveal the domestication trace from teosinte to modern maize, but also the footprints of its origin from Tripsacum, shedding light on a previously unknown contribution from Tripsacum to the speciation of Zea species. The functional consequence of the Tripsacum segment migration is also investigated, and environmental fitness conferred by the PAV may explain the whole segment as a selection target during maize domestication and improvement. Conclusions These findings provide a novel perspective that Tripsacum contributes to Zea speciation, and also instantiate a strategy for evolutionary and functional analysis of the “fossil” structure variations during genome evolution and speciation.


Caryologia ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 127-133
Author(s):  
Fernanda Dotti do Prado ◽  
Andrea Abrigato de Freitas Mourão ◽  
Fausto Foresti ◽  
José Augusto Senhorini ◽  
Fabio Porto-Foresti

This study reports the first cytogenetic characterization of the Amazonian catfish Leiarius marmoratus (“jandiá”) and its F1 (first generation) hybrid “cachandiá” with Pseudoplatystoma reticulatum (“cachara”). A diploid number of 56 chromosomes and a single argyrophilic nucleolus organizer region (Ag-NOR) in the short arm of two sub-telocentric chromosomes were observed for both L. marmoratus and P. reticulatum, but with differences in the karyotype formula and the size of the chromosome pair with NORs. The hybrid showed 2n = 56 chromosomes with an intermediate karyotype when compared to the parental species. A single Ag-NOR was maintained in the hybrid but located in two chromosomes with marked differences in size and presenting intraindividual variation in NOR activity (nucleolar dominance). For L. marmoratus and the hybrid, heterochromatic bands were predominately distributed in the terminal, centromeric, and sub-centromeric regions of some chromosomes and 5S rDNA sites located in two distinct sub-telocentric chromosomes, similar to the previously described for P. reticulatum. The data suggested that the hybrid karyotype might be insufficient for a precise discrimination of hybrids, however, Ag-NOR can be used as a chromosome marker to differentiate “cachandiá” from L. marmoratus and P. reticulatum. The current study also provides insights into the chromosomal features of L. marmoratus and contributes with novel cytogenetic information of this native Amazonian catfish included in the Pimelodidae family.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 617
Author(s):  
Álvaro S. Roco ◽  
Thomas Liehr ◽  
Adrián Ruiz-García ◽  
Kateryna Guzmán ◽  
Mónica Bullejos

Xenopus laevis and its diploid relative, Xenopus tropicalis, are the most used amphibian models. Their genomes have been sequenced, and they are emerging as model organisms for research into disease mechanisms. Despite the growing knowledge on their genomes based on data obtained from massive genome sequencing, basic research on repetitive sequences in these species is lacking. This study conducted a comparative analysis of repetitive sequences in X. laevis and X. tropicalis. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) with Cot DNA of both species revealed a conserved enrichment of repetitive sequences at the ends of the chromosomes in these Xenopus species. The repeated sequences located on the short arm of chromosome 3 from X. tropicalis were not related to the sequences on the short arm of chromosomes 3L and 3S from X. laevis, although these chromosomes were homoeologous, indicating that these regions evolved independently in these species. Furthermore, all the other repetitive sequences in X. tropicalis and X. laevis may be species-specific, as they were not revealed in cross-species hybridizations. Painting experiments in X. laevis with chromosome 7 from X. tropicalis revealed shared sequences with the short arm of chromosome 3L. These regions could be related by the presence of the nucleolus organizer region (NOR) in both chromosomes, although the region revealed by chromosome painting in the short arm of chromosome 3L in X. laevis did not correspond to 18S + 28S rDNA sequences, as they did not colocalize. The identification of these repeated sequences is of interest as they provide an explanation to some problems already described in the genome assemblies of these species. Furthermore, the distribution of repetitive DNA in the genomes of X. laevis and X. tropicalis might be a valuable marker to assist us in understanding the genome evolution in a group characterized by numerous polyploidization events coupled with hybridizations.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Noriyuki Nakamura ◽  
Takafumi Ushida ◽  
Yoshinori Moriyama ◽  
Kenji Imai ◽  
Tomoko Nakano-Kobayashi ◽  
...  

Abstract Background Bilateral congenital diaphragmatic hernia (CDH) is very rare. A few studies have reported the pathogenic role of 5p in CDH. Case presentation A 23-year-old primigravida Japanese woman was referred for the following abnormal findings at 33 weeks of gestation: polyhydramnios, macroglossia, talipes equinovarus, and levocardia. A marker chromosome was detected by amniocentesis. Fluorescence in situ hybridization with whole chromosome paint 5 and nucleolus organizer region probes confirmed its origin from chromosome 5 and an acrocentric chromosome. The karyotype of the fetus was diagnosed as 47, XY, +mar. ish +mar(WCP5+). At 39 + 5 weeks, a 2462 g male infant was delivered, with a specific facial configuration. Bilateral CDH, hypoplasia of the corpus callosum, atrial septal defect, and hypothyroidism were also detected in the baby. The karyotype of the peripheral blood was consistent with that of the amniocentesis. Conclusion Genes coded on 5p might be associated with the pathogenesis of CDH; however, further investigation is required.


2020 ◽  
Vol 14 (1) ◽  
pp. 27-42
Author(s):  
Alber Sousa Campos ◽  
Ramon Marin Favarato ◽  
Eliana Feldberg

The karyotypes and chromosomal characteristics of three Acestrorhynchus Eigenmann et Kennedy, 1903 species were examined using conventional and molecular protocols. These species had invariably a diploid chromosome number 2n = 50. Acestrorhynchus falcatus (Block, 1794) and Acestrorhynchus falcirostris (Cuvier, 1819) had the karyotype composed of 16 metacentric (m) + 28 submetacentric (sm) + 6 subtelocentric (st) chromosomes while Acestrorhynchus microlepis (Schomburgk, 1841) had the karyotype composed of 14m+30sm+6st elements. In this species, differences of the conventional and molecular markers between the populations of Catalão Lake (AM) and of Apeu Stream (PA) were found. Thus the individuals of Pará (Apeu) were named Acestrorhynchus prope microlepis. The distribution of the constitutive heterochromatin blocks was species-specific, with C-positive bands in the centromeric and telomeric regions of a number of different chromosomes, as well as in interstitial sites and completely heterochromatic arms. The phenotypes of nucleolus organizer region (NOR) were simple, i. e. in a terminal position on the p arm of pair No. 23 except in A. microlepis, in which it was located on the q arm. Fluorescence in situ hybridization (FISH) revealed 18S rDNA sites on one chromosome pair in karyotype of A. falcirostris and A. prope microlepis (pair No. 23) and three pairs (Nos. 12, 23, 24) in A. falcatus and (Nos. 8, 23, 24) in A. microlepis; 5S rDNA sites were detected in one chromosome pair in all three species. The mapping of the telomeric sequences revealed terminal sequences in all the chromosomes, as well as the presence of interstitial telomeric sequences (ITSs) in a number of chromosome pairs. The cytogenetic data recorded in the present study indicate that A. prope microlepis may be an unnamed species.


2019 ◽  
Vol 13 (4) ◽  
pp. 411-422 ◽  
Author(s):  
Luciene Castuera de Oliveira ◽  
Marcos Otávio Ribeiro ◽  
Gerlane de Medeiros Costa ◽  
Cláudio Henrique Zawadzki ◽  
Ana Camila Prizon-Nakajima ◽  
...  

In the present study, we analyzed individuals of Hypostomus soniae (Loricariidae) collected from the Teles Pires River, southern Amazon basin, Brazil. Hypostomus soniae has a diploid chromosome number of 2n = 64 and a karyotype composed of 12 metacentric (m), 22 submetacentric (sm), 14 subtelocentric (st), and 16 acrocentric (a) chromosomes, with a structural difference between the chromosomes of the two sexes: the presence of a block of heterochromatin in sm pair No. 26, which appears to represent a putative initial stage of the differentiation of an XX/XY sex chromosome system. This chromosome, which had a heterochromatin block, and was designated proto-Y (pY), varied in the length of the long arm (q) in comparison with its homolog, resulting from the addition of constitutive heterochromatin. It is further distinguished by the presence of major ribosomal cistrons in a subterminal position of the long arm (q). The Nucleolus Organizer Region (NOR) had different phenotypes among the H. soniae individuals in terms of the number of Ag-NORs and 18S rDNA sites. The origin, distribution and maintenance of the chromosomal polymorphism found in H. soniae reinforced the hypothesis of the existence of a proto-Y chromosome, demonstrating the rise of an XX/XY sex chromosome system.


Sign in / Sign up

Export Citation Format

Share Document