hartogs domain
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 209 ◽  
pp. 112332
Author(s):  
An Wang ◽  
Xin Zhao


2020 ◽  
Vol 491 (1) ◽  
pp. 124264
Author(s):  
An Wang ◽  
Chengchen Zhong ◽  
Bo Lin




2020 ◽  
Vol 102 (2) ◽  
pp. 282-292
Author(s):  
LE HE ◽  
YANYAN TANG ◽  
ZHENHAN TU

The Fock–Bargmann–Hartogs domain $D_{n,m}(\,\unicode[STIX]{x1D707}):=\{(z,w)\in \mathbb{C}^{n}\times \mathbb{C}^{m}:\Vert w\Vert ^{2}<e^{-\unicode[STIX]{x1D707}\Vert z\Vert ^{2}}\}$, where $\unicode[STIX]{x1D707}>0$, is an unbounded strongly pseudoconvex domain with smooth real-analytic boundary. We compute the weighted Bergman kernel of $D_{n,m}(\,\unicode[STIX]{x1D707})$ with respect to the weight $(-\unicode[STIX]{x1D70C})^{\unicode[STIX]{x1D6FC}}$, where $\unicode[STIX]{x1D70C}(z,w):=\Vert w\Vert ^{2}-e^{-\unicode[STIX]{x1D707}\Vert z\Vert ^{2}}$ and $\unicode[STIX]{x1D6FC}>-1$. Then, for $p\in [1,\infty ),$ we show that the corresponding weighted Bergman projection $P_{D_{n,m}(\,\unicode[STIX]{x1D707}),(-\unicode[STIX]{x1D70C})^{\unicode[STIX]{x1D6FC}}}$ is unbounded on $L^{p}(D_{n,m}(\,\unicode[STIX]{x1D707}),(-\unicode[STIX]{x1D70C})^{\unicode[STIX]{x1D6FC}})$, except for the trivial case $p=2$. This gives an example of an unbounded strongly pseudoconvex domain whose ordinary Bergman projection is $L^{p}$ irregular when $p\in [1,\infty )\setminus \{2\}$, in contrast to the well-known positive $L^{p}$ regularity result on a bounded strongly pseudoconvex domain.



2019 ◽  
Vol 30 (1) ◽  
pp. 86-106
Author(s):  
Enchao Bi ◽  
Guicong Su ◽  
Zhenhan Tu


2018 ◽  
Vol 29 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Zhiming Feng

Let [Formula: see text] be a globally defined real Kähler potential on a domain [Formula: see text], and [Formula: see text] be a Kähler metric on the Hartogs domain [Formula: see text] associated with the Kähler potential [Formula: see text]. First, we obtain explicit formulas of the coefficients [Formula: see text] of the Bergman function expansion for the Hartogs domain [Formula: see text] in a momentum profile [Formula: see text]. Second, using explicit expressions of [Formula: see text], we obtain necessary and sufficient conditions for the coefficients [Formula: see text] to be constants. Finally, we obtain all the invariant complete Kähler metrics on Cartan–Hartogs domains such that their the coefficients [Formula: see text] of the Bergman function expansions are constants.



2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Jianbing Su ◽  
Chao Zhang

We obtain new generalized Hua’s inequality corresponding to YIV(N,n;K), where YIV(N,n;K) denotes the fourth Cartan-Hartogs domain in CN+n. Furthermore, we introduce the weighted Bloch spaces on YIV(N,n;K) and apply our inequality to study the boundedness and compactness of composition operator Cϕ from βp(YIV(N,n;K)) to βq(YIV(N,n;K)) for p≥0 and q≥0.



2015 ◽  
Vol 26 (08) ◽  
pp. 1550056 ◽  
Author(s):  
Jie Zhao ◽  
An Wang ◽  
Yihong Hao

The Bergman–Hartogs domain which can be regarded as a generalization of the Cartan–Hartogs domain provides a large class of bounded pseudoconvex domains which are in general nonhomogeneous. Since the geometry of a domain is determined by its automorphism group to a certain extent, it is meaningful to study the structure of the automorphism group. In this paper, we completely determine the structure of the holomorphic automorphism group of the Bergman–Hartogs domain over a minimal homogeneous domain with center at the origin.



Sign in / Sign up

Export Citation Format

Share Document