piled raft foundation
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 94)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 14 (22) ◽  
Author(s):  
Shivanand Mali ◽  
Baleshwar Singh

Abstract In the present study, a small piled raft foundation has been simulated numerically through PLAXIS 3-D software. The objective of this study was to investigate the effect of governing parameters such as pile length, pile spacing, pile diameter, and number of piles on the settlement and load-bearing behavior of piled raft, so as to achieve the optimum design for small piled raft configurations. An optimized design of a piled raft is defined as a design with allowable center and differential settlements and satisfactory bearing behavior for a given raft geometry and loading. The results indicated that, with increase in pile length, pile spacing, pile diameter, and number of piles, both the center settlement ratio and differential settlement ratio decreased. The load-bearing capacity of piled raft increased with increase in pile length, pile spacing, pile diameter, and number of piles. Furthermore, the percentage load carried by the piles increased as the pile length, pile spacing, pile diameter, and number of piles increased. The bending moment and shear force in corner pile are noted to be more, and they decreased towards the center pile. With increase in pile length, the maximum raft bending moment decreased, whereas the maximum shear force in the raft increased. Further, with increase in pile spacing, pile diameter, and number of piles, the maximum bending moment and maximum shear force in the raft increased. The optimum parameters for the piled raft foundation can be selected efficiently with the consideration of maximum bending moment and maximum shear force while designing the piled raft foundation. Thus, the results of this study can be used as guidelines for achieving optimum design for small piled raft foundation.


Author(s):  
Tuan Nguyen Anh

Core structure is an indispensable part of high buildings. Normally, the foundation of the core structure has a raft of larger size than the other foundations in the same project; therefore, the foundation of the core structure can be viewed as a small piled raft foundation. Currently, when calculating the piled foundation of the core, it is mostly assumed that the piles system will bear all the project loads. But this calculation method is not suitable for the actual constructions as well as does not make full use of the bearing capacity of the structure and the ground, leading to using more materials and causing more waste. Core structure aims to increase both stiffness and horizontal load capacity in high-rise buildings, so the moment inside the core transmitted to the foundation is very large. One of the shortcomings of the Plaxis 3D Foundation software is its inability to declare the moment affecting on the foundation due to the loads in this program just includes distributed loads, line loads and point loads in the geometry model. Consequently, when using Plaxis 3D Foundation software to calculate the core wall foundation of high-rise buildings, this moment is converted into an equivalent pair of moments. The research shows that when the core foundation of a high-rise building is placed on soft soil, the pile carries 96%, most of the load transmitted to the foundation. However, when the foundation is placed on hard soil, the soil surrounding the raft will bear about 10% of the load transmitted to the foundation. If this matter is skipped, there will be a large error in calculation and design


2021 ◽  
Vol 27 (1) ◽  
pp. 107-117
Author(s):  
Evelyn Jogiadinata ◽  
Paulus Pramono Rahardjo ◽  
Aswin Lim

Piled-raft foundation is a combination of pile foundation and raft foundation. Bearing capacity of piled-raft foundation yielded from contribution of both pile capacity and raft capacity. Most of the time, design of pile foundation is assumed that all load is solely carried by pile and the capacity of raft is ignored. In this study, three-dimensional finite element analysis was applied to analyze the load percentage that can be carried by raft. A case study, which is located in Central Jakarta, Indonesia, was modeled to investigate this issue. This project was instrumented with two pressure cells where the data were used to verified the model and the load distribution. The analysis results showed good agreement with the measurement data, where the load carried by the raft is around 33-42%.


2021 ◽  
Vol 1973 (1) ◽  
pp. 012208
Author(s):  
R. S. Al Masoodi ◽  
A. M. Al Gharrawi ◽  
H. H. Hussein

Sign in / Sign up

Export Citation Format

Share Document