pile diameter
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 40)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Siya Rimoy ◽  
Matias Silva ◽  
Richard J. Jardine

Uncertainties regarding the axial cyclic behaviour of piles driven in sands led to an extended programme of calibration chamber instrumented pile experiments. Broad trends are identified and interpreted with reference to normalised cyclic loading parameters Qcyclic/QT, Qmean/QT and N. Cyclic damage is shown to be related to changes in the radial effective stress regime close to the shaft. While stable loading leads to little or no change as cycling continues in the sand masses’ effective stress regime, high-level cyclic loading can affect stresses far out into the sand mass. The test systems’ chamber-to-pile diameter ratio has a significant impact on outcomes. Piles installed in loose, fine, sand are far more susceptible to cyclic loading than in denser, coarser sand. Little or no change in pile stiffness was seen in tests that remained within the stable cyclic region, even over 10,000 or more cycles. Unstable tests lost their stiffness rapidly and metastable cases showed intermediate behaviours. The permanent deflections developed under cycling depend on the combined influence of Qcyclic/QT, Qmean/QT and N. While model tests provide many valuable insights into the behaviour of piles driven in sand, they are unable to capture some key features observed in the field.


Technologic ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Reinata Avhycanti Laventina ◽  
Kartika Setiawati

Jalan Tol Trans Sumatera Pekanbaru-Dumai merupakan ruas jalan tol utama karena digunakan untuk mobilisasi dan bisnis kota Pekanbaru-Dumai. Timbunan pada badan Jalan Tol Trans Sumatera merupakan faktor penting untuk struktur geoteknik di sekitar lereng yang berada di badan jalan tol. Timbunan tanah pada badan jalan tol digunakan untuk pencapaian elevasi akhir subgrade tanah. Pengaruh analisis stabilitas lereng serta penurunan konsolidasi tanah sangat berpengaruh pada analisis struktur geoteknik untuk timbunan tanah. Permasalahan yang terjadi adalah terjadi penurunan yang disertai kelongsoran sebagian lebar badan jalan di STA 79+ 615. Jalan Tol Trans Sumatera Seksi V Pekanbaru-Dumai dan box culvert tanah dasar mengalami penurunan. Kerusakan yang terjadi pada kedua lokasi berupa penurunan disertai retakan arah jalan dengan pergeseran tanah kearah samping (longsor). Analisis terhadap sisi geoteknik menggunakan perkuatan salah satunya menggunakan struktur pile embankment. Pada analisis perkuatan dan penanganan timbunan menggunakan struktur pile embankment akan dilakukan analisis faktor keamanan timbunan jalan. Parameter perkuatan dan penanganan timbunan tanah (sudut geser dalam, poisson ratio, kohesi, modulus elastisitas, dan muka air tanah) dapat digunakan untuk analisis struktur geoteknik berikutnya. Analisis perkuatan akan menggunakan aplikasi Plaxis (program analisis geoteknik dengan basis finite element method). Direncanakan untuk pile embankment dengan tipe spun pile dapat mencapai nilai safety factor 1,5 (faktor keamanan terhadap stabilitas global minimum SNI 8460-2017) dan mencapai nilai safety factor 1,1 (faktor keamanan terhadap beban gempa SNI 8460-2017) dengan dimensi spun pile diameter 60 cm, panjang efektif 10-12 meter dengan jarak spasi antar spun pile adalah 3 meter, dan tebal LTP (Load Transfer Platform) sebesar 1,8 meter.


Géotechnique ◽  
2021 ◽  
pp. 1-39
Author(s):  
Huan Wang ◽  
M. Fraser Bransby ◽  
Barry M. Lehane ◽  
Lizhong Wang ◽  
Yi Hong

This paper presents a numerical investigation of the monotonic lateral response of large diameter monopiles in drained sand with configurations typical of those employed to support offshore wind turbines. Results from new centrifuge tests using instrumented monopiles in uniform dry sand deposits are first presented and used to illustrate the suitability of an advanced hypoplastic constitutive model to represent the sand in finite element analyses of the experiments. These analyses are then extended to examine the influence of pile diameter and loading eccentricity on the lateral response of rigid monopiles. The results show no dependency of suitably normalized lateral load transfer curves on the pile diameter and loading eccentricity. It is also shown that, in a given uniform sand, the profile with depth of net soil pressure at ultimate lateral capacity is independent of the pile diameter because of the insensitivity of the depth to the rotation centre for a rigid pile. A normalization method is subsequently proposed which unifies the load-deflection responses of different diameter rigid piles at a given load eccentricity.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nie Qingke ◽  
Li Xilai ◽  
Yuan Wei ◽  
Wang Anli ◽  
Wang Wei ◽  
...  

The thickness of a karst cave roof at the bottom of a socketed pile plays an important role in the vertical bearing capacity of the socketed pile in the karst region. In practice, its thickness is simply recommended to be not less than 3 times the diameter of the socketed pile, regardless of the geological conditions and the size of the cave itself. In this study, we present an approach for calculating the critical thickness-to-diameter ratio of a karst cave roof η (η = h/d, the ratio of karst cave roof thickness to pile diameter) based on the generalized Hoek–Brown criterion by virtue of the limit analysis method, which considers the pile tip load, hardness degree of the intact rock, and rock mass quality. The analysis results show that less load at the bottom of the pile, higher quality of rock mass, and more hard rock all lead to a smaller critical thickness-diameter ratio, whereas the critical thickness-to-diameter ratio is greater. The validity of the proposed method is verified through a physical model test.


2021 ◽  
Vol 16 (2) ◽  
pp. 87-103
Author(s):  
Bousbia Nawel ◽  
Messast Salah ◽  
Houssou Noura

Abstract The construction and loading of deep foundations (piles) of high-rise buildings causes a considerable effect in terms of stresses and deformation and requires assessing their impact on the response of adjacent tunnels to deformations, particularly for pile foundations, which are often constructed in locations very close to existing tunnels. The execution process for piles structures generates displacements, stresses, and forces, which are transferred through the piles’ soil surrounding a nearby existing tunnel. The research presented in this paper has led to a significantly improved understanding of pile-tunnel interaction problem. It is crucial for the analysis of the impact of the pile construction on an existing tunnel. The treated topic appears in a setting of an urban environment, where we construct numerous profound foundations, sometimes in contact or adjacent to a. In this paper, the response of the existing tunnel under constructed pile process is studied. Numerical modeling was carried out using Plaxis3D software in which the Mohr-Coulomb Model (MC) has been used for modeling, while the piles/ tunnels are modeled as a linear elastic material. Furthermore, a parametric study is conducted, and its cases are investigated. The displacements and the stresses generated on the tunnel lining decreases with the increase in relative distance between pile and tunnel (spacing), the location/length of the pile from the tunnel, the pile diameter, the number of piles. We have also identified two geometrical parameters of the tunnel: shape section and thickness lining which play a prominent role in the interaction between an existing tunnel and a new pile to excavate.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Liang Yang ◽  
Wenyuan Xu ◽  
Keke Li

The settlement of the widening of soft soil subgrade highways is typically associated with different treatment positions of cement mixed piles. In order to overcome this, in the current paper we employ the finite element method to simulate and analyze the influence of piles under an existing road slope and under an existing subgrade and new embankment on the settlement characteristics of the subgrade and foundation. In particular, we focus on the influence of the pile length and pile spacing on the subgrade and foundation settlements based on a northern high-speed reconstruction and expansion project. The subgrade and foundation soils in the finite element analysis are considered to be homogeneous, continuous, and isotropic elastoplastic materials. The Mohr–Coulomb ideal elastoplastic constitutive model is implemented as the constitutive soil model. The impact of piles under an existing subgrade and new embankment on the settlement is observed to be more significant than that of piles under the existing road slope. Moreover, the subgrade and foundation settlements increase with the pile spacing under the existing road slope and under the existing subgrade and new embankment. More specifically, an increase of the pile spacing from 200% to 400% of the pile diameter is associated with an increase in the maximum settlement of the foundation surface from 1.76 to 1.85 cm (existing road slope) and from 1.44 to 1.96 cm (existing subgrade and new embankment). In addition, the subgrade and foundation settlements decrease for increasing pile lengths under the existing road slope and under the existing subgrade and new embankment, the pile length increases from 4.7 to 9.2 m, and the maximum foundation surface settlement is reduced from 6.2 to 5.52 cm and from 9.73 to 5.43 cm, respectively. The results can provide reference for future subgrade widening projects.


2021 ◽  
Vol 14 (22) ◽  
Author(s):  
Shivanand Mali ◽  
Baleshwar Singh

Abstract In the present study, a small piled raft foundation has been simulated numerically through PLAXIS 3-D software. The objective of this study was to investigate the effect of governing parameters such as pile length, pile spacing, pile diameter, and number of piles on the settlement and load-bearing behavior of piled raft, so as to achieve the optimum design for small piled raft configurations. An optimized design of a piled raft is defined as a design with allowable center and differential settlements and satisfactory bearing behavior for a given raft geometry and loading. The results indicated that, with increase in pile length, pile spacing, pile diameter, and number of piles, both the center settlement ratio and differential settlement ratio decreased. The load-bearing capacity of piled raft increased with increase in pile length, pile spacing, pile diameter, and number of piles. Furthermore, the percentage load carried by the piles increased as the pile length, pile spacing, pile diameter, and number of piles increased. The bending moment and shear force in corner pile are noted to be more, and they decreased towards the center pile. With increase in pile length, the maximum raft bending moment decreased, whereas the maximum shear force in the raft increased. Further, with increase in pile spacing, pile diameter, and number of piles, the maximum bending moment and maximum shear force in the raft increased. The optimum parameters for the piled raft foundation can be selected efficiently with the consideration of maximum bending moment and maximum shear force while designing the piled raft foundation. Thus, the results of this study can be used as guidelines for achieving optimum design for small piled raft foundation.


2021 ◽  
Vol 13 (21) ◽  
pp. 11862
Author(s):  
Chia Yu Huat ◽  
Seyed Mohammad Hossein Moosavi ◽  
Ahmed Salih Mohammed ◽  
Danial Jahed Armaghani ◽  
Dmitrii Vladimirovich Ulrikh ◽  
...  

In geotechnical engineering, there is a need to propose a practical, reliable and accurate way for the estimation of pile bearing capacity. A direct measure of this parameter is difficult and expensive to achieve on-site, and needs a series of machine settings. This study aims to introduce a process for selecting the most important parameters in the area of pile capacity and to propose several tree-based techniques for forecasting the pile bearing capacity, all of which are fully intelligent. In terms of the first objective, pile length, hammer drop height, pile diameter, hammer weight, and N values of the standard penetration test were selected as the most important factors for estimating pile capacity. These were then used as model inputs in different tree-based techniques, i.e., decision tree (DT), random forest (RF), and gradient boosted tree (GBT) in order to predict pile friction bearing capacity. This was implemented with the help of 130 High Strain Dynamic Load tests which were conducted in the Kepong area, Malaysia. The developed tree-based models were assessed using various statistical indices and the best performance with the lowest system error was obtained by the GBT technique. The coefficient of determination (R2) values of 0.901 and 0.816 for the train and test parts of the GBT model, respectively, showed the power and capability of this tree-based model in estimating pile friction bearing capacity. The GBT model and the input selection process proposed in this research can be introduced as a new, powerful, and practical methodology to predict pile capacity in real projects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fukun Gui ◽  
Jianqiao Kong ◽  
Dejun Feng ◽  
Xiaoyu Qu ◽  
Fang Zhu ◽  
...  

AbstractAnchor piles are widely used in marine aquaculture, and the safety is largely determined by the uplift resistance capacity,especially in harsh ocean environments. However, there are few practical guides to the design and installation of the anchor piles for mooring the body of marine aquaculture equipment. Laboratory experiments were conducted to investigate the effect of the initial tension angle, pile diameter, embedded depth, and pile configuration on the uplift resistance capacity of anchor piles under oblique loads. CCD camera and load cell were utilized to measure the corresponding displacement and load, respectively. The results show that increasing the initial tension angle of circular and square single piles can significantly improve the uplift resistance capacity. The failure load of the square single pile was slightly higher than that of the circular single pile. Increasing the pile diameter can effectively improve the failure load and delay the development speed of the pile top displacement. Increasing the embedded depth can effectively improve the failure load and increase the lateral displacement of the pile top. The uplift resistance capacity of the dual anchor piles was better than that of the single anchor piles. The layout configuration has little effect on the failure load, but has a large effect on the displacement development.


Author(s):  
Gan Nan ◽  
Haiming Liu ◽  
Yanjie Zhang ◽  
Wenyun Ding ◽  
Jing Cao ◽  
...  

The traditional bored pile technology has some arduous problems, such as the sediment at the pile tip, the mud skin along the pile shaft, and the stress release due to borehole construction. The post-grouted technology at the pile tip of bored pile has emerged because of demand. The grouting migration height (GMH) is of great significance to the strengthen and reinforcement of the pile foundation. This paper derives the calculation formula of the GMH based on the theory of the column hole expansion and Herschel-Bulkley model. The influence of relevant parameters on the GMH is discussed. Aiming at the problem of the grouting migration along the pile shaft in layered soils, the iterative calculation method of the GMH is proposed. The correctness of the GMH is verified by an engineering case, which can guide the engineering practice. The result shows that the GMH increases with the increase of the grouting pressure, the pile diameter and the thickness of the mud skin, and the grouting pressure is positively correlated with the GMH. The GMH decreases with the increase of the buried depth, the consistency coefficient and the rheological index. On this basis, the correctness of the GMH is verified by an engineering case.


Sign in / Sign up

Export Citation Format

Share Document