quadratic residues
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 35)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2 (1) ◽  
pp. 29-34
Author(s):  
Zdeněk Pezlar

In this text we provide an introduction to algebraic number theory and show its applications in solving certain difficult diophantine equations. We begin with a quick summary of the theory of quadratic residues, before diving into a select few areas of algebraic number theory. Our article is accompanied by a couple of worked problems and exercises for the reader to tackle on their own.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Patrick Browne ◽  
Ronan Egan ◽  
Fintan Hegarty ◽  
Padraig Ó Catháin

In a celebrated paper of 1893, Hadamard established the maximal determinant theorem, which establishes an upper bound on the determinant of a matrix with complex entries of norm at most 1. His paper concludes with the suggestion that mathematicians study the maximum value of the determinant of an $n \times n$ matrix with entries in $\{ \pm 1\}$. This is the Hadamard maximal determinant problem. This survey provides complete proofs of the major results obtained thus far. We focus equally on upper bounds for the determinant (achieved largely via the study of the Gram matrices), and constructive lower bounds (achieved largely via quadratic residues in finite fields and concepts from design theory). To provide an impression of the historical development of the subject, we have attempted to modernise many of the original proofs, while maintaining the underlying ideas. Thus some of the proofs have the flavour of determinant theory, and some appear in print in English for the first time. We survey constructions of matrices in order $n \equiv 3 \mod 4$, giving asymptotic analysis which has not previously appeared in the literature. We prove that there exists an infinite family of matrices achieving at least 0.48 of the maximal determinant bound. Previously the best known constant for a result of this type was 0.34.


2021 ◽  
pp. 203-237
Author(s):  
Satyabrota Kundu ◽  
Sypriyo Mazumder
Keyword(s):  

2021 ◽  
pp. 99-118
Author(s):  
Gove Effinger ◽  
Gary L. Mullen

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1184
Author(s):  
Paul Cotan ◽  
George Teşeleanu

The main approaches currently used to construct identity-based encryption (IBE) schemes are based on bilinear mappings, quadratic residues and lattices. Among them, the most attractive approach is the one based on quadratic residues, due to the fact that the underlying security assumption is a well-understood hard problem. The first such IBE scheme was constructed by Cocks, and some of its deficiencies were addressed in subsequent works. In this paper, we focus on two constructions that address the anonymity problem inherent in Cocks’ scheme, and we tackle some of their incomplete theoretical claims. More precisely, we rigorously study Clear et al.’s and Zhao et al.’s schemes and give accurate probabilities of successful decryption and identity detection in the non-anonymized version of the schemes. Furthermore, in the case of Zhao et al.’s scheme, we give a proper description of the underlying security assumptions.


Author(s):  
Stewart Hengeveld ◽  
Giancarlo Labruna ◽  
Aihua Li

A magic square M M over an integral domain D D is a 3 × 3 3\times 3 matrix with entries from D D such that the elements from each row, column, and diagonal add to the same sum. If all the entries in M M are perfect squares in D D , we call M M a magic square of squares over D D . In 1984, Martin LaBar raised an open question: “Is there a magic square of squares over the ring Z \mathbb {Z} of the integers which has all the nine entries distinct?” We approach to answering a similar question when D D is a finite field. We claim that for any odd prime p p , a magic square over Z p \mathbb Z_p can only hold an odd number of distinct entries. Corresponding to LaBar’s question, we show that there are infinitely many prime numbers p p such that, over Z p \mathbb Z_p , magic squares of squares with nine distinct elements exist. In addition, if p ≡ 1 ( mod 120 ) p\equiv 1\pmod {120} , there exist magic squares of squares over Z p \mathbb Z_p that have exactly 3, 5, 7, or 9 distinct entries respectively. We construct magic squares of squares using triples of consecutive quadratic residues derived from twin primes.


2021 ◽  
Vol 297 ◽  
pp. 01046
Author(s):  
Zhour Oumazouz ◽  
Driss Karim

The main objective of the study conducted in this article is to introduce a new algorithm of encryption and decryption of a sensitive message after transforming it into a binary message. Our proposed encryption algorithm is based on the study of a particular graph constructed algebraically from the quadratic residues. We have exploited the Paley graph to introduce an abstract way of encryption of such message bit according to the other message bits by the intermidiate study of the neighborhood of a graph vertex. The strong regularity of the Paley graphs and the unknown behavior of the quadratic residues will play a very important role in the cryptanalysis part which allows to say that the brute force attack remains for the moment the only way to obtain the set of possible messages.


Sign in / Sign up

Export Citation Format

Share Document