transmission rate control
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuming Zhang ◽  
Bohao Feng ◽  
Aleteng Tian ◽  
Chengxiao Yu ◽  
Zhiruo Liu ◽  
...  

Recent advances in the Internet of Things (IoT) technologies have enabled ubiquitous smart devices to sense and process various kinds of data. However, these innovations also raise the concern of efficient data transmission. Tackling the above issue is nontrivial since the resource constraints and environmental randomness in IoT require a lightweight transmission scheme while guaranteeing system stability. In this paper, we formulate the transmission scheduling problem of multi-interface IoT devices as a concave optimization, aimed at accommodating the randomness of the IoT environment within the network capacity. By applying the Lyapunov optimization technique, we divide the stochastic problem into a series of low-complex subproblems, which can be individually solved per time slot, and develop a dynamical control algorithm that does not require a priori knowledge such as link states. Theoretical analysis shows that our algorithms nicely bound the average queue length and are asymptotically optimal. Finally, extensive simulation results verify the theoretical conclusions and validate the effectiveness of the proposed algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Thomas Geithner ◽  
Fikret Sivrikaya

The multicast communication concept offers a scalable and efficient method for many classes of applications; however, its potential remains largely unexploited when it comes to link-layer multicasting in wireless local area networks. The fundamental lacking feature for this is a transmission rate control mechanism that offers higher transmission performance and lower channel utilization, while ensuring the reliability of wireless multicast transmissions. This is much harder to achieve in a scalable manner for multicast when compared with unicast transmissions, which employs explicit acknowledgment mechanisms for rate control. This article introduces EWRiM, a reliable multicast transmission rate control protocol for IEEE 802.11 networks. It adapts the transmission rate sampling concept to multicast through an aggregated receiver feedback scheme and combines it with a sliding window forward error correction (FEC) mechanism for ensuring reliability at the link layer. An inherent novelty of EWRiM is the close interaction of its FEC and transmission rate selection components to address the performance-reliability tradeoff in multicast communications. The performance of EWRiM was tested in three scenarios with intrinsically different traffic patterns; namely, music streaming scenario, large data frame delivery scenario, and an IoT scenario with frequent distribution of small data packets. Evaluation results demonstrate that the proposed approach adapts well to all of these realistic multicast traffic scenarios and provides significant improvements over the legacy multicast- and unicast-based transmissions.


Sign in / Sign up

Export Citation Format

Share Document