ruled real hypersurfaces
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
pp. 2150049
Author(s):  
Miguel Domínguez-Vázquez ◽  
Olga Pérez-Barral

We complete the classification of ruled real hypersurfaces with shape operator of constant norm in nonflat complex space forms by showing the existence of a unique inhomogeneous example in the complex hyperbolic space.



Author(s):  
Makoto Kimura ◽  
Hyunjin Lee ◽  
Juan de Dios Pérez ◽  
Young Jin Suh


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 31
Author(s):  
Jong Taek Cho ◽  
Makoto Kimura

Along a transversal geodesic γ whose tangent belongs to the contact distribution D, we define the transversal Jacobi operator Rγ=R(·,γ˙)γ˙ on an almost contact Riemannian manifold M. Then, using the transversal Jacobi operator Rγ, we give a new characterization of the Sasakian sphere. In the second part, we characterize the complete ruled real hypersurfaces in complex hyperbolic space.



Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 642
Author(s):  
George Kaimakamis ◽  
Konstantina Panagiotidou ◽  
Juan de Dios Pérez

The Levi-Civita connection and the k-th generalized Tanaka-Webster connection are defined on a real hypersurface M in a non-flat complex space form. For any nonnull constant k and any vector field X tangent to M the k-th Cho operator F X ( k ) is defined and is related to both connections. If X belongs to the maximal holomorphic distribution D on M, the corresponding operator does not depend on k and is denoted by F X and called Cho operator. In this paper, real hypersurfaces in non-flat space forms such that F X S = S F X , where S denotes the Ricci tensor of M and a further condition is satisfied, are classified.



2019 ◽  
Vol 207 (1) ◽  
pp. 227-242 ◽  
Author(s):  
Makoto Kimura ◽  
Sadahiro Maeda ◽  
Hiromasa Tanabe


2019 ◽  
Vol 62 (02) ◽  
pp. 383-392 ◽  
Author(s):  
Sadahiro Maeda ◽  
Hiromasa Tanabe ◽  
Seiichi Udagawa

AbstractWe first provide a necessary and sufficient condition for a ruled real hypersurface in a nonflat complex space form to have constant mean curvature in terms of integral curves of the characteristic vector field on it. This yields a characterization of minimal ruled real hypersurfaces by circles. We next characterize the homogeneous minimal ruled real hypersurface in a complex hyperbolic space by using the notion of strong congruency of curves.





Sign in / Sign up

Export Citation Format

Share Document