forward computation
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Shaoqi Wang ◽  
Aidi Pi ◽  
Xiaobo Zhou

Scalability of distributed deep learning (DL) training with parameter server architecture is often communication constrained in large clusters. There are recent efforts that use a layer by layer strategy to overlap gradient communication with backward computation so as to reduce the impact of communication constraint on the scalability. However, the approaches cannot be effectively applied to the overlap between parameter communication and forward computation. In this paper, we propose and design iBatch, a novel communication approach that batches parameter communication and forward computation to overlap them with each other. We formulate the batching decision as an optimization problem and solve it based on greedy algorithm to derive communication and computation batches. We implement iBatch in the open-source DL framework BigDL and perform evaluations with various DL workloads. Experimental results show that iBatch improves the scalability of a cluster of 72 nodes by up to 73% over the default PS and 41% over the layer by layer strategy.


2010 ◽  
Vol 22 (12) ◽  
pp. 2913-2925 ◽  
Author(s):  
Kenji Aso ◽  
Takashi Hanakawa ◽  
Toshihiko Aso ◽  
Hidenao Fukuyama

The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.


Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. SM213-SM221 ◽  
Author(s):  
William W. Symes

Reverse time migration (RTM) requires that fields computed in forward time be accessed in reverse order. Such out-of-order access, to recursively computed fields, requires that some part of the recursion history be stored (checkpointed), with the remainder computed by repeating parts of the forward computation. Optimal checkpointing algorithms choose checkpoints in such a way that the total storage is minimized for a prescribed level of excess computation, or vice versa. Optimal checkpointing dramatically reduces the storage required by RTM, compared to that needed for nonoptimal implementations, at the price of a small increase in computation. This paper describes optimal checkpointing in a form which applies both to RTM and other applications of the adjoint state method, such as construction of velocity updates from prestack wave equation migration.


Sign in / Sign up

Export Citation Format

Share Document