lanczos process
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Robert Beinert ◽  
Gabriele Steidl

AbstractPrincipal component analysis (PCA) is known to be sensitive to outliers, so that various robust PCA variants were proposed in the literature. A recent model, called reaper, aims to find the principal components by solving a convex optimization problem. Usually the number of principal components must be determined in advance and the minimization is performed over symmetric positive semi-definite matrices having the size of the data, although the number of principal components is substantially smaller. This prohibits its use if the dimension of the data is large which is often the case in image processing. In this paper, we propose a regularized version of reaper which enforces the sparsity of the number of principal components by penalizing the nuclear norm of the corresponding orthogonal projector. If only an upper bound on the number of principal components is available, our approach can be combined with the L-curve method to reconstruct the appropriate subspace. Our second contribution is a matrix-free algorithm to find a minimizer of the regularized reaper which is also suited for high-dimensional data. The algorithm couples a primal-dual minimization approach with a thick-restarted Lanczos process. This appears to be the first efficient convex variational method for robust PCA that can handle high-dimensional data. As a side result, we discuss the topic of the bias in robust PCA. Numerical examples demonstrate the performance of our algorithm.


2011 ◽  
Vol 435 (3) ◽  
pp. 578-600 ◽  
Author(s):  
Peter Benner ◽  
Heike Faßbender ◽  
Martin Stoll
Keyword(s):  

2006 ◽  
Vol 14 (04) ◽  
pp. 397-414 ◽  
Author(s):  
THOMAS DELILLO ◽  
TOMASZ HRYCAK

We present a novel parameter choice strategy for the conjugate gradient regularization algorithm which does not assume a priori information about the magnitude of the measurement error. Our approach is to regularize within the Krylov subspaces associated with the normal equations. We implement conjugate gradient via the Lanczos bidiagonalization process with reorthogonalization, and then we construct regularized solutions using the SVD of a bidiagonal projection constructed by the Lanczos process. We compare our method with the one proposed by Hanke and Raus and illustrate its performance with numerical experiments, including detection of acoustic boundary vibrations.


Sign in / Sign up

Export Citation Format

Share Document