phage stock
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Sevil Erdenliğ Gürbilek ◽  
Neval Berrin Arserim ◽  
Osman Yaşar Tel ◽  
Zeynep Sertkaya ◽  
Oktay Keskin

Backgorund: Bacteriophages are closely related to the evolution and virulence of some important bacterial pathogens. Due to their highly significant roles in pathogenesis and virulence, S. aureus bacteriophages are frequently studied. Bacteriophages are grouped into two main categories depending on their life cycles. There are highly consistently lytic phages (virulent) and temperate phages. This study aimed to isolate bacteriophages and determine their phage serogroups from phage plaques in S. aureus cultures in order to show if they are lytic or lysogenic, the latter plays a major role in horizontal gene transfer. Methods: A total of 234 S. aureus isolates were recovered from milk samples from cases with gangrenous mastitis in sheep. Staphylococcal phages are determined based on the type and serogroup by PCR using specific primers. Result: Our study allowed us to determine serogroups of the isolated bacteriophages. Two phage stock samples included only one serogroup while the others included more than one phage serotypes and needed further purification Fa, L and D serogroups were not determined in the study. Present work revealed that all the isolated phages were temperate phages, which play a highly significant role in horizontal gene transfer.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2261 ◽  
Author(s):  
Natasha Bonilla ◽  
Maria Isabel Rojas ◽  
Giuliano Netto Flores Cruz ◽  
Shr-Hau Hung ◽  
Forest Rohwer ◽  
...  

A major limitation with traditional phage preparations is the variability in titer, salts, and bacterial contaminants between successive propagations. Here we introduce the Phage On Tap (PoT) protocol for the quick and efficient preparation of homogenous bacteriophage (phage) stocks. This method produces homogenous, laboratory-scale, high titer (up to 1010–11PFU·ml−1), endotoxin reduced phage banks that can be used to eliminate the variability between phage propagations and improve the molecular characterizations of phage. The method consists of five major parts, including phage propagation, phage clean up by 0.22 μm filtering and chloroform treatment, phage concentration by ultrafiltration, endotoxin removal, and the preparation and storage of phage banks for continuous laboratory use. From a starting liquid lysate of > 100 mL, the PoT protocol generated a clean, homogenous, laboratory phage bank with a phage recovery efficiency of 85% within just two days. In contrast, the traditional method took upwards of five days to produce a high titer, but lower volume phage stock with a recovery efficiency of only 4%. Phage banks can be further purified for the removal of bacterial endotoxins, reducing endotoxin concentrations by over 3,000-fold while maintaining phage titer. The PoT protocol focused on T-like phages, but is broadly applicable to a variety of phages that can be propagated to sufficient titer, producing homogenous, high titer phage banks that are applicable for molecular and cellular assays.


2016 ◽  
Author(s):  
Natasha Bonilla ◽  
Maria Isabel Rojas ◽  
Giuliano Netto Flores Cruz ◽  
Shr-Hau Hung ◽  
Forest Rohwer ◽  
...  

A major limitation with traditional phage preparations is the variability in titer, salts, and bacterial contaminants between successive propagations. Here we introduce the Phage On Tap (PoT) protocol for the quick and efficient preparation of homogenous bacteriophage (phage) stocks. This method produces homogenous, laboratory-scale, high titer (up to 1010-11 PFU∙ml-1), endotoxin reduced phage banks that can be used to eliminate the variability between phage propagations and improve the molecular characterizations of phage. The method consists of five major parts, including phage propagation, phage clean up by 0.22 µm filtering and chloroform treatment, phage concentration by ultrafiltration, endotoxin removal, and the preparation and storage of phage banks for continuous laboratory use. From a starting liquid lysate of >100 mL, the PoT protocol generated a clean, homogenous, laboratory phage bank with a phage recovery efficiency of 85% within just two days. In contrast, the traditional method took upwards of five days to produce a high titer, but lower volume phage stock with a recovery efficiency of only 4%. Phage banks can be further purified for the removal of bacterial endotoxins, reducing endotoxin concentrations by over 3,000-fold while maintaining phage titer. The PoT protocol focused on T-like phages, but is broadly applicable to a variety of phages that can be propagated to sufficient titer, producing homogenous, high titer phage banks that are applicable for molecular and cellular assays.


2016 ◽  
Author(s):  
Natasha Bonilla ◽  
Maria Isabel Rojas ◽  
Giuliano Netto Flores Cruz ◽  
Shr-Hau Hung ◽  
Forest Rohwer ◽  
...  

A major limitation with traditional phage preparations is the variability in titer, salts, and bacterial contaminants between successive propagations. Here we introduce the Phage On Tap (PoT) protocol for the quick and efficient preparation of homogenous bacteriophage (phage) stocks. This method produces homogenous, laboratory-scale, high titer (up to 1010-11 PFU∙ml-1), endotoxin reduced phage banks that can be used to eliminate the variability between phage propagations and improve the molecular characterizations of phage. The method consists of five major parts, including phage propagation, phage clean up by 0.22 µm filtering and chloroform treatment, phage concentration by ultrafiltration, endotoxin removal, and the preparation and storage of phage banks for continuous laboratory use. From a starting liquid lysate of >100 mL, the PoT protocol generated a clean, homogenous, laboratory phage bank with a phage recovery efficiency of 85% within just two days. In contrast, the traditional method took upwards of five days to produce a high titer, but lower volume phage stock with a recovery efficiency of only 4%. Phage banks can be further purified for the removal of bacterial endotoxins, reducing endotoxin concentrations by over 3,000-fold while maintaining phage titer. The PoT protocol focused on T-like phages, but is broadly applicable to a variety of phages that can be propagated to sufficient titer, producing homogenous, high titer phage banks that are applicable for molecular and cellular assays.


protocols.io ◽  
2015 ◽  
Author(s):  
Mathias Middelboe ◽  
Amy M ◽  
and Sif
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document