shuttle vectors
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 18)

H-INDEX

53
(FIVE YEARS 2)

Author(s):  
Hend Altaib ◽  
Yuka Ozaki ◽  
Tomoya Kozakai ◽  
Kouta Sakaguchi ◽  
Izumi Nomura ◽  
...  

A series of Bifidobacterium - Escherichia coli shuttle vectors (pKO403- lacZ′ -Cm, pKO403- lacZ′ -Sp, pKO403- lacZ′ -p15A) were constructed based on the pKO403 backbone, which carries a temperature-sensitive replication origin. These vectors carry the lacZ′ α fragment, overhung by two facing type IIS restriction sites, for blue-white selection and seamless gene cloning.


Author(s):  
Daniel P Nickerson ◽  
Monique A Quinn ◽  
Joshua M Milnes

Abstract Plasmid shuttle vectors capable of replication in both Saccharomyces cerevisiae and Escherichia coli and optimized for controlled modification in vitro and in vivo are a key resource supporting yeast as a premier system for genetics research and synthetic biology. We have engineered a series of yeast shuttle vectors optimized for efficient insertion, removal and substitution of plasmid yeast replication loci, allowing generation of a complete set of integrating, low copy and high copy plasmids via predictable operations as an alternative to traditional subcloning. We demonstrate the utility of this system through modification of replication loci via Cre recombinase, both in vitro and in vivo, and restriction endonuclease treatments.


2021 ◽  
Vol 6 ◽  
pp. 82
Author(s):  
Rachel J. Skilton ◽  
Colette O'Neill ◽  
Nicholas R. Thomson ◽  
David J. Lampe ◽  
Ian N. Clarke

Background Genetic systems have been developed for Chlamydia but the extremely low transformation frequency remains a significant bottleneck.  Our goal is to develop a self-replicating transposon delivery vector for C. trachomatis which can be expanded prior to transposase induction. Methods We made E. coli/ C. trachomatis shuttle vectors bearing the Himar1 C9  transposase under control of the tet promoter and a novel rearrangement of the Himar1 transposon with the β-lactamase gene.  Activity of the transposase was monitored by immunoblot and by DNA sequencing. Results We constructed pSW2-mCh-C9, a C. trachomatis plasmid designed to act as a self-replicating vector carrying both the Himar1 C9  transposase under tet promoter control and its transposon.  However, we were unable to recover this plasmid in C. trachomatis following multiple attempts at transformation. Therefore, we assembled two new deletion plasmids pSW2-mCh-C9-ΔTpon carrying only the Himar1 C9  transposase (under tet promoter control) and a sister vector (same sequence backbone) pSW2-mCh-C9-ΔTpase carrying its cognate transposon.  We demonstrated that the biological components that make up both pSW2-mCh-C9-ΔTpon and pSW2-mCh-C9-ΔTpase are active in E. coli.  Both these plasmids could be independently recovered in C. trachomatis. We attempted to perform lateral gene transfer by transformation and mixed infection with C. trachomatis strains bearing pSW2-mCh-C9-ΔTpon and pSW2-RSGFP-Tpon (a green fluorescent version of pSW2-mCh-C9-ΔTpase).  Despite success in achieving mixed infections, it was not possible to recover progeny bearing both versions of these plasmids. Conclusions We have designed a self-replicating plasmid vector pSW2-mCh-C9 for C. trachomatis carrying the Himar1 C9  transposase under tet promoter control.  Whilst this can be transformed into E. coli it cannot be recovered in C. trachomatis.  Based on selected deletions and phenotypic analyses we conclude that low level expression from the tet inducible promoter is responsible for premature transposition and hence plasmid loss early on in the transformation process.


2020 ◽  
Author(s):  
Daniel P. Nickerson ◽  
Monique A. Quinn ◽  
Joshua M. Milnes

ABSTRACTPlasmid shuttle vectors capable of replication in both Saccharomyces cerevisiae and Escherichia coli and optimized for controlled modification in vitro and in vivo are a key resource supporting yeast as a premier system for genetics research and synthetic biology. We have engineered a series of yeast shuttle vectors optimized for efficient insertion, removal and substitution of plasmid yeast replication loci, allowing generation of a complete set of integrating, low copy and high copy plasmids via predictable operations as an alternative to traditional subcloning. We demonstrate the utility of this system through modification of replication loci via Cre recombinase, both in vitro and in vivo, and restriction endonuclease treatments.


2020 ◽  
Vol 35 (4) ◽  
pp. 181-191
Author(s):  
Kevin R. Jones ◽  
Benjamin Ross Belvin ◽  
Francis L. Macrina ◽  
Janina P. Lewis

Sign in / Sign up

Export Citation Format

Share Document