projection constant
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2018 ◽  
Vol 17 (2) ◽  
pp. 31-64
Author(s):  
Tomáš Bayer

This article presents  new algorithm for interval plotting the projection graticule on the interval $\varOmega=\varOmega_{\varphi}\times\varOmega_{\lambda}$ based on the combined sampling technique. The proposed method synthesizes uniform and adaptive sampling approaches and treats discontinuities of the coordinate functions $F,G$. A full set of the projection constant values represented by the projection pole $K=[\varphi_{k},\lambda_{k}]$, two standard parallels $\varphi_{1},\varphi_{2}$ and the central meridian shift $\lambda_{0}^{\prime}$ are supported. In accordance with the discontinuity direction it utilizes a subdivision of the given latitude/longitude intervals $\varOmega_{\varphi}=[\underline{\varphi},\overline{\varphi}]$, $\varOmega_{\lambda}=[\underline{\lambda},\overline{\lambda}]$ to the set of disjoint subintervals $\varOmega_{k,\varphi}^{g},$$\varOmega_{k,\lambda}^{g}$ forming tiles without internal singularities, containing only "good" data; their parameters can be easily adjusted. Each graticule tile borders generated over $\varOmega_{k}^{g}=\varOmega_{k,\varphi}^{g}\times\varOmega_{k,\lambda}^{g}$ run along singularities. For combined sampling with the given threshold $\overline{\alpha}$ between adjacent segments of the polygonal approximation the recursive approach has been used; meridian/parallel offsets are $\Delta\varphi,\Delta\lambda$. Finally, several tests of the proposed algorithms are involved.


2015 ◽  
Vol 91 (3) ◽  
pp. 447-463 ◽  
Author(s):  
TOMASZ KOBOS

The relative projection constant${\it\lambda}(Y,X)$ of normed spaces $Y\subset X$ is ${\it\lambda}(Y,X)=\inf \{\Vert P\Vert :P\in {\mathcal{P}}(X,Y)\}$, where ${\mathcal{P}}(X,Y)$ denotes the set of all continuous projections from $X$ onto $Y$. By the well-known result of Bohnenblust, for every $n$-dimensional normed space $X$ and a subspace $Y\subset X$ of codimension one, ${\it\lambda}(Y,X)\leq 2-2/n$. The main goal of the paper is to study the equality case in the theorem of Bohnenblust. We establish an equivalent condition for the equality ${\it\lambda}(Y,X)=2-2/n$ and present several applications. We prove that every three-dimensional space has a subspace with the projection constant less than $\frac{4}{3}-0.0007$. This gives a nontrivial upper bound in the problem posed by Bosznay and Garay. In the general case, we give an upper bound for the number of ($n-1$)-dimensional subspaces with the maximal relative projection constant in terms of the facets of the unit ball of $X$. As a consequence, every $n$-dimensional normed space $X$ has an ($n-1$)-dimensional subspace $Y$ with ${\it\lambda}(Y,X)<2-2/n$. This contrasts with the separable case in which it is possible that every hyperplane has a maximal possible projection constant.


2001 ◽  
Vol 6 (7) ◽  
pp. 401-411 ◽  
Author(s):  
Entisarat El-Shobaky ◽  
Sahar Mohammed Ali ◽  
Wataru Takahashi

We give the sufficient conditions for the existence of a metric projection onto convex closed subsets of normed linear spaces which are reduced conditions than that in the case of reflexive Banach spaces and we find a general formula for the projections onto the maximal proper subspaces of the classical Banach spacesl p,1≤p<∞andc 0. We also give the sufficient and necessary conditions for an infinite matrix to represent a projection operator froml p,1≤p<∞orc 0onto anyone of their maximal proper subspaces.


2001 ◽  
Vol 6 (5) ◽  
pp. 299-308 ◽  
Author(s):  
Entisarat El-Shobaky ◽  
Sahar Mohammed Ali ◽  
Wataru Takahashi

We find a lower estimation for the projection constant of the projective tensor productX⊗ ∧Yand the injective tensor productX⊗ ∨Y, we apply this estimation on some previous results, and we also introduce a new concept of the projection constants of operators rather than that defined for Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document