černikov group
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2016 ◽  
Vol 23 (02) ◽  
pp. 181-187
Author(s):  
Francesco de Giovanni ◽  
Alessio Russo

A group is called a Černikov group if it is abelian-by-finite and satisfies the minimal condition on subgroups. A new characterization of Černikov groups is given here, by proving that in a suitable large class of generalised soluble groups they coincide with the groups having only finitely many homomorphic images of finite rank (up to isomorphisms) and admitting an ascending normal series whose factors have finite rank.


2010 ◽  
Vol 17 (03) ◽  
pp. 487-494 ◽  
Author(s):  
Gérard Endimioni ◽  
Carmela Sica

In this paper we show that some finiteness properties on a centralizer of a particular subgroup can be inherited by the whole group. Among other things, we prove the following characterization of polycyclic groups: a soluble group G is polycyclic if and only if it contains a finitely generated subgroup H, formed by bounded left Engel elements, whose centralizer CG(H) is polycyclic. In the context of Černikov groups we obtain a more general result: a radical group is a Černikov group if and only if it contains a finitely generated subgroup, formed by left Engel elements, whose centralizer is a Černikov group. The aforementioned results generalize a theorem by Onishchuk and Zaĭtsev about the centralizer of a finitely generated subgroup in a nilpotent group.


2007 ◽  
Vol 2007 ◽  
pp. 1-11
Author(s):  
Francesco Russo

A groupGhas Černikov classes of conjugate subgroups if the quotient groupG/coreG(NG(H))is a Černikov group for each subgroupHofG. An anti-CCgroupGis a group in which each nonfinitely generated subgroupKhas the quotient groupG/coreG(NG(K))which is a Černikov group. Analogously, a groupGhas polycyclic-by-finite classes of conjugate subgroups if the quotient groupG/coreG(NG(H))is a polycyclic-by-finite group for each subgroupHofG. An anti-PCgroupGis a group in which each nonfinitely generated subgroupKhas the quotient groupG/coreG(NG(K))which is a polycyclic-by-finite group. Anti-CCgroups and anti-PCgroups are the subject of the present article.


1988 ◽  
Vol 31 (3) ◽  
pp. 475-479 ◽  
Author(s):  
Martyn R. Dixon

The theory of Fitting classes is, by now, a well established part of the theory of finite soluble groups. In contrast, Fitting classes have received rather scant attention in infinite groups, although some recent work of Beidleman and Karbe [2] and Beidleman, Karbe and Tomkinson [3] suggest that one can obtain results in this direction. The paper [2], cited above, in fact generalizes earlier work of Tomkinson [9] to the class of locally soluble FC-groups. The present paper is concerned with the theory of Fitting classes in a class of groups somewhat similar to the class of FC-groups, namely the class of CC-groups, introduced by Polovickiǐ in [6]. A group G is a CC-group if G/CG(xG) is a Černikov group for all x ∈ G where, as in the rest of this paper, we use the standard group theoretic notation of [7]. Recently, Alcázar and Otal [1] have shown how to generalize results of B. H. Neumann [5] to the class of CC-groups. The main purpose of the present note is to illustrate further how one can handle CC-groups, in an analogous manner to FC-groups, by using techniques similar to those used in [1] and [4].


Author(s):  
B. Hartley

Let G be a group and A a right G-module. If the additive group A+ of A is a Černikov group, that is, a direct sum of finitely many cyclic and quasi-cyclic groups, we shall call A a Černikov module over G or over the integral group ring . Suppose that A+ is, furthermore, a divisible p-group, where p is a prime. Since the endomorphism ring of a quasi-cyclic p-group is isomorphic to the ring of p-adic integers, we find that is a free -module of finite rank. We can make A* into a right G-module in the usual way, and since A* is actually just the Pontrjagin dual of A, Pontrjagin duality shows that A → A* gives rise to a contravariant equivalence between the categories of divisible Černikov p-torsion modules over and G-modules which are -free of finite rank. Since the latter category is to some extent familiar, at least when G is finite – for its objects determine representations of G over the field of p-adic numbers, a field of characteristic zero – we may hope to exploit this correspondence systematically to study divisible Černikov p-modules. This is our main theme.


Sign in / Sign up

Export Citation Format

Share Document