A dual approach to Černikov modules

Author(s):  
B. Hartley

Let G be a group and A a right G-module. If the additive group A+ of A is a Černikov group, that is, a direct sum of finitely many cyclic and quasi-cyclic groups, we shall call A a Černikov module over G or over the integral group ring . Suppose that A+ is, furthermore, a divisible p-group, where p is a prime. Since the endomorphism ring of a quasi-cyclic p-group is isomorphic to the ring of p-adic integers, we find that is a free -module of finite rank. We can make A* into a right G-module in the usual way, and since A* is actually just the Pontrjagin dual of A, Pontrjagin duality shows that A → A* gives rise to a contravariant equivalence between the categories of divisible Černikov p-torsion modules over and G-modules which are -free of finite rank. Since the latter category is to some extent familiar, at least when G is finite – for its objects determine representations of G over the field of p-adic numbers, a field of characteristic zero – we may hope to exploit this correspondence systematically to study divisible Černikov p-modules. This is our main theme.

Author(s):  
A. Mader ◽  
C. Vinsonhaler

AbstractThis note investigates torsion-free abelian groups G of finite rank which embed, as subgroups of finite index, in a finite direct sum C of subgroups of the additive group of rational numbers. Specifically, we examine the relationship between G and C when the index of G in C is minimal. Some properties of Warfield duality are developed and used (in the case that G is locally free) to relate our results to earlier ones by Burkhardt and Lady.


Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


2006 ◽  
Vol 80 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Xian-Dong Wang ◽  
Kaiming Zhao

AbstractLet K be a field of characteristic 0, G the direct sum of two copies of the additive group of integers. For a total order ≺ on G, which is compatible with the addition, and for any ċ1, ċ2 ∈ K, we define G-graded highest weight modules M(ċ1, ċ2, ≺) over the Virasoro-like algebra , indexed by G. It is natural to call them Verma modules. In the present paper, the irreducibility of M (ċ1, ċ2, ≺) is completely determined and the structure of reducible module M (ċ1, ċ2, ≺)is also described.


2006 ◽  
Vol 13 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Tariel Kemoklidze

Abstract A cotorsion hull of the separable 𝑝-group 𝑇 is considered when 𝑇 is a direct sum of torsion-complete groups. It is proved that in the considered case its cotorsion hull is fully transitive if and only if 𝑇 is a direct sum of cyclic groups or is a torsion-complete group.


1961 ◽  
Vol 13 ◽  
pp. 192-200 ◽  
Author(s):  
Christine W. Ayoub

In this paper we consider again the group-theoretic configuration studied in (1) and (2). Let G be an additive group (not necessarily abelian), let M be a system of operators for G, and let ϕ be a family of admissible subgroups which form a complete lattice relative to intersection and compositum. Under these circumstances we call G an M — ϕ group. In (1) we studied the normal chains for an M — ϕ group and the relation between certain normal chains. In (2) we considered the possibility of representing an M — ϕ group as the direct sum of certain of its subgroups, and proved that with suitable restrictions on the M — ϕ group the analogue of the following theorem for finite groups holds: A group is the direct product of its Sylow subgroups if and only if it is nilpotent. Here we show that under suitable hypotheses (hypotheses (I), (II), and (III) stated at the beginning of §3) it is possible to generalize to M — ϕ groups many of the Sylow theorems of classical group theorem.


1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


1990 ◽  
Vol 33 (1) ◽  
pp. 11-17 ◽  
Author(s):  
K. Benabdallah ◽  
C. Piché

AbstractThe class of primary abelian groups whose subsocles are purifiable is not yet completely characterized and it contains the class of direct sums of cyclic groups and torsion complete groups. In sharp constrast with this, the class of groups whose p2-bounded subgroups are purifiable consist only of those groups which are the direct sum of a bounded and a divisible group. Various tools are developed and a short application to the pure envelopes of cyclic subgroups is given in the last section.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Svetlana Ermakova

AbstractIn this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.


Sign in / Sign up

Export Citation Format

Share Document