cathodic stripping voltammetry
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 24)

H-INDEX

50
(FIVE YEARS 3)

2021 ◽  
Vol 18 (19) ◽  
pp. 5265-5289
Author(s):  
Loes J. A. Gerringa ◽  
Martha Gledhill ◽  
Indah Ardiningsih ◽  
Niels Muntjewerf ◽  
Luis M. Laglera

Abstract. Competitive ligand exchange–adsorptive cathodic stripping voltammetry (CLE-AdCSV) is used to determine the conditional concentration ([L]) and the conditional binding strength (logKcond) of dissolved organic Fe-binding ligands, which together influence the solubility of Fe in seawater. Electrochemical applications of Fe speciation measurements vary predominantly in the choice of the added competing ligand. Although different applications show the same trends, [L] and logKcond differ between the applications. In this study, binding of two added ligands in three different common applications to three known types of natural binding ligands is compared. The applications are (1) salicylaldoxime (SA) at 25 µM (SA25) and short waiting time, (2) SA at 5 µM (SA5), and (3) 2-(2-thiazolylazo)-ρ-cresol (TAC) at 10 µM, the latter two with overnight equilibration. The three applications were calibrated under the same conditions, although having different pH values, resulting in the detection window centers (D) DTAC > DSA25 ≥ SA5 (as logD values with respect to Fe3+: 12.3 > 11.2 ≥ 11). For the model ligands, there is no common trend in the results of logKcond. The values have a considerable spread, which indicates that the error in logKcond is large. The ligand concentrations of the nonhumic model ligands are overestimated by SA25, which we attribute to the lack of equilibrium between Fe-SA species in the SA25 application. The application TAC more often underestimated the ligand concentrations and the application SA5 over- and underestimated the ligand concentration. The extent of overestimation and underestimation differed per model ligand, and the three applications showed the same trend between the nonhumic model ligands, especially for SA5 and SA25. The estimated ligand concentrations for the humic and fulvic acids differed approximately 2-fold between TAC and SA5 and another factor of 2 between SA5 and SA25. The use of SA above 5 µM suffers from the formation of the species Fe(SA)x (x>1) that is not electro-active as already suggested by Abualhaija and van den Berg (2014). Moreover, we found that the reaction between the electro-active and non-electro-active species is probably irreversible. This undermines the assumption of the CLE principle, causes overestimation of [L] and could result in a false distinction into more than one ligand group. For future electrochemical work it is recommended to take the above limitations of the applications into account. Overall, the uncertainties arising from the CLE-AdCSV approach mean we need to search for new ways to determine the organic complexation of Fe in seawater.


2021 ◽  
Author(s):  
Loes J. A. Gerringa ◽  
Martha Gledhill ◽  
Indah Ardiningsih ◽  
Niels Muntjewerf ◽  
Luis M. Laglera

Abstract. Competitive ligand exchange–adsorptive cathodic stripping voltammetry (CLE-AdCSV) is used to determine the conditional concentration ([L]) and the conditional binding strength (logKcond) of dissolved organic Fe-binding ligands, which together influence the solubility of Fe in seawater. Electrochemical applications of Fe speciation measurements vary predominantly in the choice of the added competing ligand. Although different applications show the same trends, [L] and logKcond differ between the applications. In this study, binding of two added ligands in three different common applications to three known types of natural binding ligands are compared. The applications are: 1) Salicylaldoxime (SA) at 25µM (SA25) and short waiting time, 2) SA at 5µM (SA5) and 3)2-(2-thiazolylazo)-ρ-cresol (TAC) at 10 µM, the latter two with overnight equilibration. The three applications were calibrated under the same conditions, although having different pH values, resulting in the detection window centers (D) DTAC > DSA25 ≥ SA5 (as log D values with respect to Fe3+: 12.3 > 11.2 ≥ 11). For the model ligands, there is no common trend in the results of logKcond. The values have a considerable spread, which indicates that the error in logKcond is large. The ligand concentrations of the non humic model ligands are overestimated by SA25 which we attribute to the lack of equilibrium between Fe-SA species in the SA25 application. The application TAC more often underestimated the ligand concentrations and the application SA5 over and under estimated the ligand concentration. The extent of overestimation and underestimation differed per model ligand, and the three applications showed the same trend between the non humic model ligands especially for SA5 and SA25. The estimated ligand concentrations for the humic and fulvic acids differed approximately 2 fold between TAC and SA5 and another factor of 2 between SA5 and SA25. The use of SA above 5 µM suffers from the formation of the species Fe(SA)x (x > 1) that is not electro-active as already suggested by Abualhaija and Van den Berg (2014). Moreover, we found that the reaction between the electro-active and non-electro-active species is probably irreversible. This undermines the assumption of the CLE principle, causes overestimation of [L] and could result in a false distinction into more than one ligand group. For future electrochemical work it is recommended to take the above limitations of the applications into account. Overall, the uncertainties arising from the CLE-AdCSV approach mean we need to search for new ways to determine the organic complexation of Fe in seawater.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2958
Author(s):  
Waree Boonmee ◽  
Kritsada Samoson ◽  
Janjira Yodrak ◽  
Adul Thiagchanya ◽  
Apichai Phonchai ◽  
...  

A simple and highly sensitive electrochemical sensor was developed for adsorptive cathodic stripping voltammetry of alprazolam. Based on an electrochemically pretreated glassy carbon electrode, the sensor demonstrated good adsorption and electrochemical reduction of alprazolam. The morphology of the glassy carbon electrode and the electrochemically pretreated glassy carbon electrode were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical behaviors of alprazolam were determined by cyclic voltammetry, and the analytical measurements were studied by adsorptive cathodic stripping voltammetry. Optimized operational conditions included the concentration and deposition time of sulfuric acid in the electrochemical pretreatment, preconcentration potential, and preconcentration time. Under optimal conditions, the developed alprazolam sensor displayed a quantification limit of 0.1 mg L−1, a detection limit of 0.03 mg L−1, a sensitivity of 67 µA mg−1 L cm−2 and two linear ranges: 0.1 to 4 and 4 to 20 mg L−1. Sensor selectivity was excellent, and repeatability (%RSD < 4.24%) and recovery (82.0 ± 0.2 to 109.0 ± 0.3%) were good. The results of determining alprazolam in beverages with the developed system were in good agreement with results from the gas chromatography–mass spectrometric method.


Sign in / Sign up

Export Citation Format

Share Document