milp model
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 103)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Vol 13 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Massimo Pinto Antonioli ◽  
Carlos Diego Rodrigues ◽  
Bruno de Athayde Prata

This paper aims at presenting a customer order scheduling environment in which the setup times are explicit and depend on the production sequence. The considered objective function is the total tardiness minimization. Since the variant under study is NP-hard, we propose a mixed-integer linear programming (MILP) model, an adaptation of the Order-Scheduling Modified Due-Date heuristic (OMDD) (referred to as Order-Scheduling Modified Due-Date Setup (OMMD-S)), an adaptation of the Framinan and Perez-Gonzalez heuristic (FP) (hereinafter referred to as Framinan and Perez-Gonzalez Setup (FP-S)), a matheuristic with Same Permutation in All Machines (SPAM), and the hybrid matheuristic SPAM-SJPO based on Job-Position Oscillation (JPO). The algorithms under comparison have been compared on an extensive benchmark of randomly generated test instances, considering two performance measures: Relative Deviation Index (RDI) and Success Rate (SR). For the small-size evaluated instances, the SPAM is the most efficient algorithm, presenting the better values of RDI and SR. For the large-size evaluated instances, the hybrid matheuristic SPAM-JPO and MILP model are the most efficient methods.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weidong Lei ◽  
Dandan Ke ◽  
Pengyu Yan ◽  
Jinsuo Zhang ◽  
Jinhang Li

PurposeThis paper aims to correct the existing mixed integer programming (MIP) model proposed by Yadav et al. (2019) [“Bi-objective optimization for sustainable supply chain network design in omnichannel.”, Journal of Manufacturing Technology Management, Vol. 30 No. 6, pp. 972–986].Design/methodology/approachThis paper first presents a counterexample to show that the existing MIP model is incorrect and then proposes an improved mixed integer linear programming (MILP) model for the considered problem. Last, a numerical experiment is conducted to test our improved MILP model.FindingsThis paper demonstrates that the formulations of the facility capacity constraints and the product flow balance constraints in the existing MIP model are incorrect and incomplete. Due to this reason, infeasible solutions could be identified as feasible ones by the existing MIP model. Hence, the optimal solution obtained with the existing MIP model could be infeasible. A counter-example is used to verify our observations. Computational results verify the effectiveness of our improved MILP model.Originality/valueThis paper gives a complete and correct formulation of the facility capacity constraints and the product flow balance constraints, and conducts other improvements on the existing MIP model. The improved MILP model can be easily implemented and would help companies to have more effective distribution networks under the omnichannel environment.


Author(s):  
Bowen Gao ◽  
Decun Dong ◽  
Yusen Wu ◽  
Dongxiu Ou

The rescheduling of train timetables under a complete blockage is a challenging process, which is more difficult when timetables contain lots of trains. In this paper, a mixed integer linear programming (MILP) model is formulated to solve the problem, following the rescheduling strategy that blocked trains wait inside the stations during the disruption. When the exact end time of the disruption is known, trains at stations downstream of the blocked station can depart early. The model aims at minimizing the total delay time and the total number of delayed trains under the constraints of station capacities, activity time, overtaking rules, and rescheduling strategies. Because there are too many variables and constraints of the MILP model to be solved, a three-stage algorithm is designed to speed up the solution. Experiments are carried out on the Beijing–Guangzhou high-speed railway line from Chibibei to Guangzhounan. The original timetable contains 162 trains, including 29 cross-line trains and 133 local trains. The simulation results show that our model can handle the optimization task of the timetable rescheduling problem very well. Compared with the one-stage algorithm, the three-stage algorithm is proved to greatly improve the solving speed of the model. All instances can get a better optimized disposition timetable within 450 to 600 s, which is acceptable for practical use.


2021 ◽  
Vol 13 (21) ◽  
pp. 11873
Author(s):  
Mohammad Ali Beheshtinia ◽  
Parisa Feizollahy ◽  
Masood Fathi

Supply chain optimization concerns the improvement of the performance and efficiency of the manufacturing and distribution supply chain by making the best use of resources. In the context of supply chain optimization, scheduling has always been a challenging task for experts, especially when considering a distributed manufacturing system (DMS). The present study aims to tackle the supply chain scheduling problem in a DMS while considering two essential sustainability aspects, namely environmental and economic. The economic aspect is addressed by optimizing the total delivery time of order, transportation cost, and production cost while optimizing environmental pollution and the quality of products contribute to the environmental aspect. To cope with the problem, it is mathematically formulated as a mixed-integer linear programming (MILP) model. Due to the complexity of the problem, an improved genetic algorithm (GA) named GA-TOPKOR is proposed. The algorithm is a combination of GA and TOPKOR, which is one of the multi-criteria decision-making techniques. To assess the efficiency of GA-TOPKOR, it is applied to a real-life case study and a set of test problems. The solutions obtained by the algorithm are compared against the traditional GA and the optimum solutions obtained from the MILP model. The results of comparisons collectively show the efficiency of the GA-TOPKOR. Analysis of results also revealed that using the TOPKOR technique in the selection operator of GA significantly improves its performance.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6803
Author(s):  
Ann-Kathrin Klaas ◽  
Hans-Peter Beck

Energy storage, both short- and long-term, will play a vital role in the energy system of the future. One storage technology that provides high power and capacity and that can be operated without carbon emissions is compressed air energy storage (CAES). However, it is widely assumed that CAES plants are not economically feasible. In this context, a mixed-integer linear programming (MILP) model of the Huntorf CAES plant was developed for revenue maximization when participating in the day-ahead market and the minute-reserve market in Germany. The plant model included various plant variations (increased power and storage capacity, recuperation) and a water electrolyzer to produce hydrogen to be used in the combustion chamber of the CAES plant. The MILP model was applied to four use cases that represent a market-orientated operation of the plant. The objective was the maximization of revenue with regard to price spreads and operating costs. To simulate forecast uncertainties of the market prices, a rolling horizon approach was implemented. The resulting revenues ranged between EUR 0.5 Mio and EUR 7 Mio per year and suggested that an economically sound operation of the storage plant is possible.


2021 ◽  
Vol 13 (20) ◽  
pp. 11373
Author(s):  
Shouxu Song ◽  
Yongting Tian ◽  
Dan Zhou

In recent years, mobile payments have gradually replaced cash payments, resulting in a gradual decline in the number of automatic teller machines (ATMs) demanded by banks. Through investigation and analysis, we determine four means to deal with decommissioned ATMs, and construct thereafter an ATM reverse logistics (RL_ATMs) network model, which includes suppliers, producers, warehouses, operators, maintenance centers, collection and inspection centers, disposal centers, remanufacturing centers, and recycling centers. This model is further expressed as a mixed integer linear programming (MILP) model. Given that an ATM recycling network has planned and batched characteristics, a percentage diversion method is proposed to transform a real multi-cycle problem to a single-cycle problem. The RL_ATMs network constructed in this study presents the two forms of ATMs, functional modules and the entire machine. We used the actual situations of the related companies and enterprises in Anhui Province and its surrounding areas, as well as major banks’ ATMs, as bases in using the LINGO software to solve the proposed MILP model with the objective function of minimizing costs and environmental emissions, and obtain the relevant companies’ launch operations. Lastly, we analyzed the relationship between coefficients in the percentage diversion method and calculation results, cost, and carbon emissions. Accordingly, we find that the number of remanufacturing and maintenance centers has no evident impact on the objective function, transportation costs account for a large proportion of the total cost, and emissions tax is small.


Sign in / Sign up

Export Citation Format

Share Document