Modeling and scheduling hybrid open shops for makespan minimization

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kennedy Anderson Guimarães de Araújo ◽  
Tiberius Oliveira e Bonates ◽  
Bruno de Athayde Prata

Purpose This study aims to address the hybrid open shop problem (HOSP) with respect to the minimization of the overall finishing time or makespan. In the HOSP, we have to process n jobs in stages without preemption. Each job must be processed once in every stage, there is a set of mk identical machines in stage k and the production flow is immaterial. Design/methodology/approach Computational experiments carried out on a set of randomly generated instances showed that the minimal idleness heuristic (MIH) priority rule outperforms the longest processing time (LPT) rule proposed in the literature and the other proposed constructive methods on most instances. Findings The proposed mathematical model outperformed the existing model in the literature with respect to computing time, for small-sized instances, and solution quality within a time limit, for medium- and large-sized instances. The authors’ hybrid iterated local search (ILS) improved the solutions of the MIH rule, drastically outperforming the models on large-sized instances with respect to solution quality. Originality/value The authors formalize the HOSP, as well as argue its NP-hardness, and propose a mixed integer linear programming model to solve it. The authors propose several priority rules – constructive heuristics based on priority measures – for finding feasible solutions for the problem, consisting of adaptations of classical priority rules for scheduling problems. The authors also propose a hybrid ILS for improving the priority rules solutions.

2017 ◽  
Vol 34 (1) ◽  
pp. 145-163 ◽  
Author(s):  
Peng-Sheng You ◽  
Pei-Ju Lee ◽  
Yi-Chih Hsieh

Purpose Many bike rental organizations permit customers to pick-up bikes from one bike station and return them at a different one. However, this service may result in bike imbalance, as bikes may accumulate in stations with low demand. To overcome the imbalance problem, this paper aims to develop a decision model to minimize the total costs of unmet demand and empty bike transport by determining bike fleet size, deployments and the vehicle routing schedule for bike transports. Design/methodology/approach This paper developed a constrained mixed-integer programming model to deal with this bike imbalance problem. The proposed model belongs to the non-deterministic polynomial-time (NP)-hard problem. This paper developed a two-phase heuristic approach to solve the model. In Phase 1, the approach determines fleet size, deployment level and the number of satisfied demands. In Phase 2, the approach determines the routing schedule for bike transfers. Findings Computational results show the following results that the proposed approach performs better than General Algebraic Modeling System (GAMS) in terms of solution quality, regardless of problem size. The objective values and the fleet size of rental bikes allocated increase as the number of rental stations increases. The cost of transportation is not directly proportional to the number of bike stations. Originality/value The authors provide an integrated model to simultaneously deal with the problems of fleet sizing, empty-resource repositioning and vehicle routing for bike transfer in multiple-station systems, and they also present an algorithm that can be applied to large-scale problems which cannot be solved by the well-known commercial software, GAMS/CPLEX.


2017 ◽  
Vol 2 (2) ◽  
pp. 114-125 ◽  
Author(s):  
Jianfeng Zheng ◽  
Cong Fu ◽  
Haibo Kuang

Purpose This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem. Design/methodology/approach This paper develops a mixed-integer linear programming model for the authors’ proposed problem. Numerical experiments based on a realistic Asia-Europe-Oceania liner shipping network are carried out to account for the effectiveness of this model. Findings The results show that one international hub port (i.e. Rotterdam) and one regional hub port (i.e. Zeebrugge) are opened in Europe. Two international hub ports (i.e. Sokhna and Salalah) are located in Western Asia, where no regional hub port is established. One international hub port (i.e. Colombo) and one regional hub port (i.e. Cochin) are opened in Southern Asia. One international hub port (i.e. Singapore) and one regional hub port (i.e. Jakarta) are opened in Southeastern Asia and Australia. Three international hub ports (i.e. Hong Kong, Shanghai and Yokohama) and two regional hub ports (i.e. Qingdao and Kwangyang) are opened in Eastern Asia. Originality/value This paper proposes a hierarchical hub location problem, in which the authors distinguish between regional and international hub ports in liner shipping. Moreover, scale economies in ship size are considered. Furthermore, the proposed problem introduces the main ports.


Author(s):  
Luca Accorsi ◽  
Daniele Vigo

In this paper, we propose a fast and scalable, yet effective, metaheuristic called FILO to solve large-scale instances of the Capacitated Vehicle Routing Problem. Our approach consists of a main iterative part, based on the Iterated Local Search paradigm, which employs a carefully designed combination of existing acceleration techniques, as well as novel strategies to keep the optimization localized, controlled, and tailored to the current instance and solution. A Simulated Annealing-based neighbor acceptance criterion is used to obtain a continuous diversification, to ensure the exploration of different regions of the search space. Results on extensively studied benchmark instances from the literature, supported by a thorough analysis of the algorithm’s main components, show the effectiveness of the proposed design choices, making FILO highly competitive with existing state-of-the-art algorithms, both in terms of computing time and solution quality. Finally, guidelines for possible efficient implementations, algorithm source code, and a library of reusable components are open-sourced to allow reproduction of our results and promote further investigations.


2018 ◽  
Vol 30 (4) ◽  
pp. 367-386 ◽  
Author(s):  
Liyang Xiao ◽  
Mahjoub Dridi ◽  
Amir Hajjam El Hassani ◽  
Wanlong Lin ◽  
Hongying Fei

Abstract In this study, we aim to minimize the total waiting time between successive treatments for inpatients in rehabilitation hospitals (departments) during a working day. Firstly, the daily treatment scheduling problem is formulated as a mixed-integer linear programming model, taking into consideration real-life requirements, and is solved by Gurobi, a commercial solver. Then, an improved cuckoo search algorithm is developed to obtain good quality solutions quickly for large-sized problems. Our methods are demonstrated with data collected from a medium-sized rehabilitation hospital in China. The numerical results indicate that the improved cuckoo search algorithm outperforms the real schedules applied in the targeted hospital with regard to the total waiting time of inpatients. Gurobi can construct schedules without waits for all the tested dataset though its efficiency is quite low. Three sets of numerical experiments are executed to compare the improved cuckoo search algorithm with Gurobi in terms of solution quality, effectiveness and capability to solve large instances.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oğuzhan Ahmet Arık

PurposeThis paper presents a mixed-integer programming model for a single machine earliness/tardiness scheduling problem where the objective is to minimize total earliness/tardiness duration when the uncertainty of parameters such as processing times and due date is coded with grey numbers.Design/methodology/approachGrey theory and grey numbers are used for illustrating the uncertainty of parameters in processing times and common due date, where the objective is to minimize the total earliness/tardiness duration. The paper proposes a 0–1 mathematical model for the problem and an effective heuristic method for the problem by using expected processing times for ordering jobs.FindingsThe uncertainty of the processing times and common due date are encoded with grey numbers and a position-dependent mixed-integer mathematical programming model is proposed for the problem in order to minimize total grey earliness/tardiness duration of jobs having grey processing times and a common due date. By using expected processing times for ranking grey processing times, V-shaped property of the problem and an efficient heuristic method for the problem are proposed. Solutions obtained from the heuristic method show that the heuristic is effective. The experimental study also reveals that while differences between upper and lower bounds of grey processing times decrease, the proposed heuristic's performance decreases.Originality/valueThe grey theory and grey numbers have been rarely used as machine scheduling problems. Therefore, this study provides an important contribution to the literature.


Author(s):  
Mojtaba Aghajani ◽  
S. Ali Torabi

Purpose The purpose of this paper is to improve the relief procurement process as one of the most important elements of humanitarian logistics. For doing so, a novel two-round decision model is developed to capture the dynamic nature of the relief procurement process by allowing demand updating. The model accounts for the supply priority of items at response phase as well. Design/methodology/approach A mixed procurement/supply policy is developed through a mathematical model, which includes spot market procurement and a novel procurement auction mechanism combining the concepts of multi-attribute and combinatorial reverse auctions. The model is of bi-objective mixed-integer non-linear programming type, which is solved through the weighted augmented e-constraint method. A case study is also provided to illustrate the applicability of the model. Findings This study demonstrates the ability of proposed approach to model post-disaster procurement which considers the dynamic environment of the relief logistics. The sensitivity analyses provide useful managerial insights for decision makers by studying the impacts of critical parameters on the solutions. Originality/value This paper proposes a novel reverse auction framework for relief procurement in the form of a multi-attribute combinatorial auction. Also, to deal with dynamic environment in the post-disaster procurement, a novel two-period programming model with demand updating is proposed. Finally, by considering the priority of relief items and model’s applicability in the setting of relief logistics, post-disaster horizon is divided into three periods and a mixed procurement strategy is developed to determine an appropriate supply policy for each period.


2019 ◽  
Vol 53 (1) ◽  
pp. 111-128
Author(s):  
Bahman Naderia ◽  
Sheida Goharib

Conventionally, in scheduling problems it is assumed that each job visits each machine once. This paper studies a novel shop scheduling called cycle shop problems where jobs might return to each machine more than once. The problem is first formulated by two mixed integer linear programming models. The characteristics of the problem are analyzed, and it is realized that the problem suffers from a shortcoming called redundancy, i.e., several sequences represents the same schedule. In this regard, some properties are introduced by which the redundant sequences can be recognized before scheduling. Three constructive heuristics are developed. They are based on the shortest processing time first, insertion neighborhood search and non-delay schedules. Then, a metaheuristic based on scatter search is proposed. The algorithms are equipped with the redundancy prevention properties that greatly reduce the computational time of the algorithms. Two sets of experiments are conducted. The proposed model and algorithms are evaluated. The results show the high performance of model and algorithms.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Zou ◽  
Guangchuan Wu ◽  
Qian Zhang

PurposeRepetitive projects play an important role in the construction industry. A crucial point in scheduling this type of project lies in enabling timely movement of crews from unit to unit so as to minimize the adverse effect of work interruptions on both time and cost. This paper aims to examine a repetitive scheduling problem with work continuity constraints, involving a tradeoff among project duration, work interruptions and total project cost (TPC). To enhance flexibility and practicability, multi-crew execution is considered and the logic relation between units is allowed to be changed arbitrarily. That is, soft logic is considered.Design/methodology/approachThis paper proposes a multi-objective mixed-integer linear programming model with the capability of yielding the optimal tradeoff among three conflicting objectives. An efficient version of the e-constraint algorithm is customized to solve the model. This model is validated based on two case studies involving a small-scale and a practical-scale project, and the influence of using soft logic on project duration and total cost is analyzed via computational experiments.FindingsUsing soft logic provides more flexibility in minimizing project duration, work interruptions and TPC, especial for non-typical projects with a high percentage of non-typical activities.Research limitations/implicationsThe main limitation of the proposed model fails to consider the learning-forgetting phenomenon, which provides space for future research.Practical implicationsThis study assists practitioners in determining the “most preferred” schedule once additional information is provided.Originality/valueThis paper presents a new soft logic-based mathematical programming model to schedule repetitive projects with the goal of optimizing three conflicting objectives simultaneously.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Farid Asgari ◽  
Fariborz Jolai ◽  
Farzad Movahedisobhani

Purpose Pumped-storage hydroelectricity (PSH) is considered as an effective method to moderate the difference in demand and supply of electricity. This study aims to understanding of the high capacity of energy production, storage and permanent exploitation has been the prominent feature of pumped-storage hydroelectricity. Design/methodology/approach In this paper, the optimization of energy production and maintenance costs in one of the large Iranian PSH has been discussed. Hence, a mathematical model mixed integer nonlinear programming developed in this area. Minimizing the difference in supply and demand in the energy production network to multiple energies has been exploited to optimal attainment scheme. To evaluate the model, exact solution CPLEX and to solve the proposed programming model, the efficient metaheuristics are utilized by the tuned parameters achieved from the Taguchi approach. Further analysis of the parameters of the problem is conducted to verify the model behavior in various test problems. Findings The results of this paper have shown that the meta-heuristic algorithm has been done in a suitable time, despite the approximation of the optimal answer, and the consequences of research indicate that the model proposed in the studied power plant is applicable. Originality/value In pumped-storage hydroelectricity plants, one of the main challenges in energy production issues is the development of production, maintenance and repair scheduling concepts that improves plant efficiency. To evaluate the mathematical model presented, exact solution CPLEX and to solve the proposed bi-objective mixed-integer linear programming model, set of efficient metaheuristics are used. Therefore, according to the level of optimization performed in the case study, it has caused the improvement of planning by 7%–12% and effective optimization processes.


2018 ◽  
Vol 29 (4) ◽  
pp. 1279-1305 ◽  
Author(s):  
Shengbin Wang ◽  
Feng Liu ◽  
Lian Lian ◽  
Yuan Hong ◽  
Haozhe Chen

Purpose The purpose of this paper is to solve a post-disaster humanitarian logistics problem in which medical assistance teams are dispatched and the relief supplies are distributed among demand points. Design/methodology/approach A mixed integer-programming model and a two-stage hybrid metaheuristic method are developed to solve the problem. Problem instances of various sizes as well as a numerical example based on the 2016 Kyushu Earthquake in Japan are used to test the proposed model and algorithm. Findings Computational results based on comparisons with the state-of-the-art commercial software show that the proposed approach can quickly find near-optimal solutions, which is highly desirable in emergency situations. Research limitations/implications Real data of the parameters of the model are difficult to obtain. Future collaborations with organizations such as Red Cross and Federal Emergency Management Agency can be extremely helpful in collecting data in humanitarian logistics research. Practical implications The proposed model and algorithm can help governments and non-governmental organizations (NGOs) to effectively and efficiently allocate and coordinate different types of humanitarian relief resources, especially when these resources are limited. Originality/value This paper is among the first ones to consider both medical team scheduling (routing) and relief aid distribution as decision variables in the humanitarian logistics field. The contributions include developing a mathematical model and a heuristic algorithm, illustrating the model and algorithm using a numerical example, and providing a decision support tool for governments and NGOs to manage the relief resources in disasters.


Sign in / Sign up

Export Citation Format

Share Document