kernel quantile estimator
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

PurposeA cost-effective way to achieve fuel economy is to reinforce positive driving behaviour. Driving behaviour can be controlled if drivers can be alerted for behaviour that results in poor fuel economy. Fuel consumption must be tracked and monitored instantaneously rather than tracking average fuel economy for the entire trip duration. A single-step application of machine learning (ML) is not sufficient to model prediction of instantaneous fuel consumption and detection of anomalous fuel economy. The study designs an ML pipeline to track and monitor instantaneous fuel economy and detect anomalies.Design/methodology/approachThis research iteratively applies different variations of a two-step ML pipeline to the driving dataset for hatchback cars. The first step addresses the problem of accurate measurement and prediction of fuel economy using time series driving data, and the second step detects abnormal fuel economy in relation to contextual information. Long short-term memory autoencoder method learns and uses the most salient features of time series data to build a regression model. The contextual anomaly is detected by following two approaches, kernel quantile estimator and one-class support vector machine. The kernel quantile estimator sets dynamic threshold for detecting anomalous behaviour. Any error beyond a threshold is classified as an anomaly. The one-class support vector machine learns training error pattern and applies the model to test data for anomaly detection. The two-step ML pipeline is further modified by replacing long short term memory autoencoder with gated recurrent network autoencoder, and the performance of both models is compared. The speed recommendations and feedback are issued to the driver based on detected anomalies for controlling aggressive behaviour.FindingsA composite long short-term memory autoencoder was compared with gated recurrent unit autoencoder. Both models achieve prediction accuracy within a range of 98%–100% for prediction as a first step. Recall and accuracy metrics for anomaly detection using kernel quantile estimator remains within 98%–100%, whereas the one-class support vector machine approach performs within the range of 99.3%–100%.Research limitations/implicationsThe proposed approach does not consider socio-demographics or physiological information of drivers due to privacy concerns. However, it can be extended to correlate driver's physiological state such as fatigue, sleep and stress to correlate with driving behaviour and fuel economy. The anomaly detection approach here is limited to providing feedback to driver, it can be extended to give contextual feedback to the steering controller or throttle controller. In the future, a controller-based system can be associated with an anomaly detection approach to control the acceleration and braking action of the driver.Practical implicationsThe suggested approach is helpful in monitoring and reinforcing fuel-economical driving behaviour among fleet drivers as per different environmental contexts. It can also be used as a training tool for improving driving efficiency for new drivers. It keeps drivers engaged positively by issuing a relevant warning for significant contextual anomalies and avoids issuing a warning for minor operational errors.Originality/valueThis paper contributes to the existing literature by providing an ML pipeline approach to track and monitor instantaneous fuel economy rather than relying on average fuel economy values. The approach is further extended to detect contextual driving behaviour anomalies and optimises fuel economy. The main contributions for this approach are as follows: (1) a prediction model is applied to fine-grained time series driving data to predict instantaneous fuel consumption. (2) Anomalous fuel economy is detected by comparing prediction error against a threshold and analysing error patterns based on contextual information.


2021 ◽  
Vol 3 (2) ◽  
pp. 481-506
Author(s):  
Albert Whata ◽  
Charles Chimedza

Following the declaration by the World Health Organisation (WHO) on 11 March 2020, that the global COVID-19 outbreak had become a pandemic, South Africa implemented a full lockdown from 27 March 2020 for 21 days. The full lockdown was implemented after the publication of the National Disaster Regulations (NDR) gazette on 18 March 2020. The regulations included lockdowns, public health measures, movement restrictions, social distancing measures, and social and economic measures. We developed a hybrid model that consists of a long-short term memory auto-encoder (LSTMAE) and the kernel quantile estimator (KQE) algorithm to detect change-points. Thereafter, we utilised the Bayesian structural times series models (BSTSMs) to estimate the causal effect of the lockdown measures. The LSTMAE and KQE, successfully detected the changepoint that resulted from the full lockdown that was imposed on 27 March 2020. Additionally, we quantified the causal effect of the full lockdown measure on population mobility in residential places, workplaces, transit stations, parks, grocery and pharmacy, and retail and recreation. In relative terms, population mobility at grocery and pharmacy places decreased significantly by −17,137.04% (p-value = 0.001 < 0.05). In relative terms, population mobility at transit stations, retail and recreation, workplaces, parks, and residential places decreased significantly by −998.59% (p-value = 0.001 < 0.05), −1277.36% (p-value = 0.001 < 0.05), −2175.86% (p-value = 0.001 < 0.05), −370.00% (p-value = 0.001< 0.05), and −22.73% (p-value = 0.001 < 0.05), respectively. Therefore, the full lockdown Level 5 imposed on March 27, 2020 had a causal effect on population mobility in these categories of places.


Test ◽  
2019 ◽  
Vol 28 (4) ◽  
pp. 1144-1174 ◽  
Author(s):  
Xuejun Wang ◽  
Yi Wu ◽  
Wei Yu ◽  
Wenzhi Yang ◽  
Shuhe Hu

2010 ◽  
Vol 140 (7) ◽  
pp. 1620-1634 ◽  
Author(s):  
Xianglan Wei ◽  
Shanchao Yang ◽  
Keming Yu ◽  
Xin Yang ◽  
Guodong Xing

Sign in / Sign up

Export Citation Format

Share Document