adaptive bandwidth
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Ming Han ◽  
Jingqin Wang ◽  
Jingtao Wang ◽  
Junying Meng ◽  
Ying Cheng

The traditional mean shift algorithm used fixed kernels or symmetric kernel function, which will cause the target tracking lost or failure. The target tracking algorithm based on mean shift with adaptive bandwidth was proposed. Firstly, the signed distance constraint function was introduced to produce the anisotropic kernel function based on signed distance kernel function. This anisotropic kernel function satisfies that the value of the region function outside the target is zero, which provides accurate tracking window for the target tracking. Secondly, calculate the mean shift window center of anisotropic kernel function template, the theory basis is the sum of vector weights from the sample point in the tracking window to the center point is zero. Thirdly, anisotropic kernel function templates adaptive update implementation by similarity threshold to limit the change of the template between two sequential pictures, so as to realize real-time precise tracking. Finally, the contrast experimental results show that our algorithm has good accuracy and high real time.


2021 ◽  
Author(s):  
Changmin Song ◽  
Se-Hyeon Cho ◽  
Young-Chan Jang
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2343
Author(s):  
Xijian Hu ◽  
Yaori Lu ◽  
Huiguo Zhang ◽  
Haijun Jiang ◽  
Qingdong Shi

The commonly used Geographically Weighted Regression (GWR) fitting method for a spatial varying coefficient model is to select a bandwidth h for the geographic location (u, v), and assign the same weight to the two dimensions. However, spatial data usually present anisotropy. The introduction of a two-dimensional bandwidth matrix not only gives weight from two dimensions separately, but also increases the direction of kernel smoothness. The adaptive bandwidth matrix is more flexible. Therefore, in this paper, a two dimensional bandwidth matrix is introduced into the spatial varying coefficient model for parameter estimation. Through simulation experiments, the results obtained under the adaptive bandwidth matrix are compared with those obtained under the global bandwidth matrix, indicating the effectiveness of introducing the adaptive bandwidth matrix.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yepeng Yao ◽  
Wenzhong Shi ◽  
Anshu Zhang ◽  
Zhewei Liu ◽  
Shuli Luo

Abstract Background The urban built environment (BE) has been globally acknowledged as one of the main factors that affects the spread of infectious disease. However, the effect of the street network on coronavirus disease 2019 (COVID-19) incidence has been insufficiently studied. Severe acute respiratory syndrome coronavirus 2, which causes COVID-19, is far more transmissible than previous respiratory viruses, such as severe acute respiratory syndrome coronavirus, which highlights the role of the spatial configuration of street network in COVID-19 spread, as it is where humans have contact with each other, especially in high-density areas. To fill this research gap, this study utilized space syntax theory and investigated the effect of the urban BE on the spatial diffusion of COVID-19 cases in Hong Kong. Method This study collected a comprehensive dataset including a total of 3815 confirmed cases and corresponding locations from January 18 to October 5, 2020. Based on the space syntax theory, six space syntax measures were selected as quantitative indicators for the urban BE. A linear regression model and Geographically Weighted Regression model were then applied to explore the underlying relationships between COVID-19 cases and the urban BE. In addition, we have further improved the performance of GWR model considering the spatial heterogeneity and scale effects by adopting an adaptive bandwidth. Result Our results indicated a strong correlation between the geographical distribution of COVID-19 cases and the urban BE. Areas with higher integration (a measure of the cognitive complexity required for a pedestrians to reach a street) and betweenness centrality values (a measure of spatial network accessibility) tend to have more confirmed cases. Further, the Geographically Weighted Regression model with adaptive bandwidth achieved the best performance in predicting the spread of COVID-19 cases. Conclusion In this study, we revealed a strong positive relationship between the spatial configuration of street network and the spread of COVID-19 cases. The topology, network accessibility, and centrality of an urban area were proven to be effective for use in predicting the spread of COVID-19. The findings of this study also shed light on the underlying mechanism of the spread of COVID-19, which shows significant spatial variation and scale effects. This study contributed to current literature investigating the spread of COVID-19 cases in a local scale from the space syntax perspective, which may be beneficial for epidemic and pandemic prevention.


Sign in / Sign up

Export Citation Format

Share Document