pressure formulation
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 2)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 27
Author(s):  
Adhip Gupta ◽  
C. S. Jog

This work develops a new monolithic finite-element-based strategy for magnetohydrodynamics (MHD) involving a compressible fluid based on a continuous velocity–pressure formulation. The entire formulation is within a nodal finite element framework, and is directly in terms of physical variables. The exact linearization of the variational formulation ensures a quadratic rate of convergence in the vicinity of the solution. Both steady-state and transient formulations are presented for two- and three-dimensional flows. Several benchmark problems are presented, and comparisons are carried out against analytical solutions, experimental data, or against other numerical schemes for MHD. We show a good coarse-mesh accuracy and robustness of the proposed strategy, even at high Hartmann numbers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohamed Abdelwahed ◽  
Nejmeddine Chorfi ◽  
Henda Ouertani

AbstractThe objective of the article is to improve the algorithms for the resolution of the spectral discretization of the vorticity–velocity–pressure formulation of the Navier–Stokes problem in two and three domains. Two algorithms are proposed. The first one is based on the Uzawa method. In the second one we consider a modified global resolution. The two algorithms are implemented and their results are compared.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2906
Author(s):  
Jaroslav Haslinger ◽  
Radek Kučera ◽  
Kristina Motyčková ◽  
Václav Šátek

The paper deals with the Stokes flow subject to the threshold leak boundary conditions in two and three space dimensions. The velocity–pressure formulation leads to the inequality type problem that is approximated by the P1-bubble/P1 mixed finite elements. The resulting algebraic system is nonsmooth. It is solved by the path-following variant of the interior point method, and by the active-set implementation of the semi-smooth Newton method. Inner linear systems are solved by the preconditioned conjugate gradient method. Numerical experiments illustrate scalability of the algorithms. The novelty of this work consists in applying dual strategies for solving the problem.


CALCOLO ◽  
2021 ◽  
Vol 58 (4) ◽  
Author(s):  
Verónica Anaya ◽  
Rubén Caraballo ◽  
Bryan Gómez-Vargas ◽  
David Mora ◽  
Ricardo Ruiz-Baier

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Verónica Anaya ◽  
David Mora ◽  
Amiya K. Pani ◽  
Ricardo Ruiz-Baier

Abstract A variational formulation is analysed for the Oseen equations written in terms of vorticity and Bernoulli pressure. The velocity is fully decoupled using the momentum balance equation, and it is later recovered by a post-process. A finite element method is also proposed, consisting in equal-order Nédélec finite elements and piecewise continuous polynomials for the vorticity and the Bernoulli pressure, respectively. The a priori error analysis is carried out in the L2-norm for vorticity, pressure, and velocity; under a smallness assumption either on the convecting velocity, or on the mesh parameter. Furthermore, an a posteriori error estimator is designed and its robustness and efficiency are studied using weighted norms. Finally, a set of numerical examples in 2D and 3D is given, where the error indicator serves to guide adaptive mesh refinement. These tests illustrate the behaviour of the new formulation in typical flow conditions, and also confirm the theoretical findings.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 259
Author(s):  
Stefania Fresca ◽  
Andrea Manzoni

Simulating fluid flows in different virtual scenarios is of key importance in engineering applications. However, high-fidelity, full-order models relying, e.g., on the finite element method, are unaffordable whenever fluid flows must be simulated in almost real-time. Reduced order models (ROMs) relying, e.g., on proper orthogonal decomposition (POD) provide reliable approximations to parameter-dependent fluid dynamics problems in rapid times. However, they might require expensive hyper-reduction strategies for handling parameterized nonlinear terms, and enriched reduced spaces (or Petrov–Galerkin projections) if a mixed velocity–pressure formulation is considered, possibly hampering the evaluation of reliable solutions in real-time. Dealing with fluid–structure interactions entails even greater difficulties. The proposed deep learning (DL)-based ROMs overcome all these limitations by learning, in a nonintrusive way, both the nonlinear trial manifold and the reduced dynamics. To do so, they rely on deep neural networks, after performing a former dimensionality reduction through POD, enhancing their training times substantially. The resulting POD-DL-ROMs are shown to provide accurate results in almost real-time for the flow around a cylinder benchmark, the fluid–structure interaction between an elastic beam attached to a fixed, rigid block and a laminar incompressible flow, and the blood flow in a cerebral aneurysm.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiu Ye ◽  
Shangyou Zhang

<p style='text-indent:20px;'>A stabilizer free WG method is introduced for the Stokes equations with superconvergence on polytopal mesh in primary velocity-pressure formulation. Convergence rates two order higher than the optimal-order for velocity of the WG approximation is proved in both an energy norm and the <inline-formula><tex-math id="M1">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> norm. Optimal order error estimate for pressure in the <inline-formula><tex-math id="M2">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> norm is also established. The numerical examples cover low and high order approximations, and 2D and 3D cases.</p>


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mohamed Abdelwahed ◽  
Ebtisam Alharbi ◽  
Nejmeddine Chorfi ◽  
Henda Ouertani

Abstract This paper deals with the iterative algorithm and the implementation of the spectral discretization of time-dependent Navier–Stokes equations in dimensions two and three. We present a variational formulation, which includes three independent unknowns: the vorticity, velocity, and pressure. In dimension two, we establish an optimal error estimate for the three unknowns. The discretization is deduced from the implicit Euler scheme in time and spectral methods in space. We present a matrix linear system and some numerical tests, which are in perfect concordance with the analysis.


Sign in / Sign up

Export Citation Format

Share Document