logarithmic singularities
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
E. R. Babich ◽  
I. P. Martynov

The object of this research is linear differential equations of the second order with regular singularities. We extend the concept of a regular singularity to linear partial differential equations. The general solution of a linear differential equation with a regular singularity is a linear combination of two linearly independent solutions, one of which in the general case contains a logarithmic singularity. The well-known Lamé equation, where the Weierstrass elliptic function is one of the coefficients, has only meromorphic solutions. We consider such linear differential equations of the second order with regular singularities, for which as a coefficient instead of the Weierstrass elliptic function we use functions that are the solutions to the first Painlevé or Korteweg – de Vries equations. These equations will be called Lamé-type equations. The question arises under what conditions the general solution of Lamé-type equations contains no logarithms. For this purpose, in the present paper, the solutions of Lamé-type equations are investigated and the conditions are found that make it possible to judge the presence or absence of logarithmic singularities in the solutions of the equations under study. An example of an equation with an irregular singularity having a solution with an logarithmic singularity is given, since the equation, defining it, has a multiple root.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Hadleigh Frost ◽  
Lionel Mason

AbstractWe review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of $$\mathcal {M}_{0,n}$$ M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle $$T^*_D\mathcal {M}_{0,n}$$ T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and $$\mathcal {K}_n$$ K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain $$n-3$$ n - 3 -forms on $$\mathcal {K}_n$$ K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral $$n-3$$ n - 3 -planes in $$\mathcal {K}_n$$ K n introduced by ABHY.


Author(s):  
Edgar Gasperin ◽  
Juan Antonio Valiente Kroon

Abstract Linear zero-rest-mass fields generically develop logarithmic singularities at the critical sets where spatial infinity meets null infinity. Friedrich's representation of spatial infinity is ideally suited to study this phenomenon. These logarithmic singularities are an obstruction to the smoothness of the zero-rest-mass field at null infinity and, in particular, to peeling. In the case of the spin-2 field it has been shown that these logarithmic singularities can be precluded if the initial data for the field satisfies a certain regularity condition involving the vanishing, at spatial infinity, of a certain spinor (the linearised Cotton spinor) and its totally symmetrised derivatives. In this article we investigate the relation between this regularity condition and the staticity of the spin-2 field. It is shown that while any static spin-2 field satisfies the regularity condition, not every solution satisfying the regularity condition is static. This result is in contrast with what happens in the case of General Relativity where staticity in a neighbourhood of spatial infinity and the smoothness of the field at future and past null infinities are much more closely related.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Angela Slavova ◽  
Petar Popivanov

AbstractThis paper deals with boundary value problems for local and nonlocal Laplace operator in 2D with exponential nonlinearities, the so-called Liouville type equations. They include the mean field equation and other equations arising in the statistical mechanics. Existence results into an explicit form for the Dirichlet problem in the unit disc $B_{1} \subset {\mathbf{R}}^{2} $ B 1 ⊂ R 2 and in the participation of positive parameters in the right-hand sides are proved in Theorems 2 and 3. Theorem 2 is illustrated by several examples including an application to the differential geometry. In Theorem 4 global radial solution of the Cauchy problem with constant data at $\partial B_{1} $ ∂ B 1 and under appropriate conditions is constructed. It develops logarithmic singularities for $r = 0 $ r = 0 , $r = \infty $ r = ∞ . An illustrative example to Theorem 4 in the case of two exponents is given at the end of the paper.


2021 ◽  
Vol 5 (3) ◽  
pp. 77
Author(s):  
Maksim V. Kukushkin

In this paper we present a method of studying a convolution operator under the Sonin conditions imposed on the kernel. The particular case of the Sonin kernel is a kernel of the fractional integral Riemman–Liouville operator, other various types of the Sonin kernels are a Bessel-type function, functions with power-logarithmic singularities at the origin e.t.c. We pay special attention to study kernels close to power type functions. The main our aim is to study the Sonin–Abel equation in the weighted Lebesgue space, the used method allows us to formulate a criterion of existence and uniqueness of the solution and classify a solution, due to the asymptotics of the Jacobi series coefficients of the right-hand side.


Author(s):  
Jon Chaika ◽  
Krzysztof Frączek ◽  
Adam Kanigowski ◽  
Corinna Ulcigrai

AbstractWe consider smooth flows preserving a smooth invariant measure, or, equivalently, locally Hamiltonian flows on compact orientable surfaces and show that, when the genus of the surface is two, almost every such locally Hamiltonian flow with two non-degenerate isomorphic saddles has singular spectrum. More in general, singularity of the spectrum holds for special flows over a full measure set of interval exchange transformations with a hyperelliptic permutation (of any number of exchanged intervals), under a roof with symmetric logarithmic singularities. The result is proved using a criterion for singularity based on tightness of Birkhoff sums with exponential tails decay. A key ingredient in the proof, which is of independent interest, is a result on translation surfaces well approximated by single cylinders. We show that for almost every translation surface in any connected component of any stratum there exists a full measure set of directions which can be well approximated by a single cylinder of area arbitrarily close to one. The result, in the special case of the stratum $$\mathcal {H}(1,1)$$ H ( 1 , 1 ) , yields rigidity sets needed for the singularity result.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 728 ◽  
Author(s):  
SAIRA ◽  
Shuhuang Xiang

In this paper, a fast and accurate numerical Clenshaw-Curtis quadrature is proposed for the approximation of highly oscillatory integrals with Cauchy and logarithmic singularities, ⨍ − 1 1 f ( x ) log ( x − α ) e i k x x − t d x , t ∉ ( − 1 , 1 ) , α ∈ [ − 1 , 1 ] for a smooth function f ( x ) . This method consists of evaluation of the modified moments by stable recurrence relation and Cauchy kernel is solved by steepest descent method that transforms the oscillatory integral into the sum of line integrals. Later theoretical analysis and high accuracy of the method is illustrated by some examples.


2019 ◽  
Vol 24 (9) ◽  
pp. 2914-2930
Author(s):  
Fahmi Grine ◽  
Mohamed Trifa ◽  
Makrem Arfaoui ◽  
Yamen Maalej ◽  
Yves Renard

In the framework of hyperelasticity, we treat the configuration of a terminated crack at the interface of an incompressible full plane composite. Considering the traction-free boundary conditions, three particular cases are discussed when a cylinder is subjected to an anti-plane shear transformation. Taking all these conditions into account, an asymptotic analysis is performed to identify the sufficient orders contributing to the singular form of the Cauchy stress static fields. Adding to that, an inquiry about the presence of logarithmic singularities was achieved using the approach of Dempsey and Sinclair.


Sign in / Sign up

Export Citation Format

Share Document