implied volatility surface
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 27)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Hye-mee Kil ◽  
Jeong-Hoon Kim

Abstract The double-mean-reverting model, introduced by Gatheral [(2008). Consistent modeling of SPX and VIX options. In The Fifth World Congress of the Bachelier Finance Society London, July 18], is known to be a successful three-factor model that can be calibrated to both CBOE Volatility Index (VIX) and S&P 500 Index (SPX) options. However, the calibration of this model may be slow because there is no closed-form solution formula for European options. In this paper, we use a rescaled version of the model developed by Huh et al. [(2018). A scaled version of the double-mean-reverting model for VIX derivatives. Mathematics and Financial Economics 12: 495–515] and obtain explicitly a closed-form pricing formula for European option prices. Our formulas for the first and second-order approximations do not require any complicated calculation of integral. We demonstrate that a faster calibration result of the double-mean revering model is available and yet the practical implied volatility surface of SPX options can be produced. In particular, not only the usual convex behavior of the implied volatility surface but also the unusual concave down behavior as shown in the COVID-19 market can be captured by our formula.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 994
Author(s):  
Elisa Alòs ◽  
Jorge A. León

Here, we review some results of fractional volatility models, where the volatility is driven by fractional Brownian motion (fBm). In these models, the future average volatility is not a process adapted to the underlying filtration, and fBm is not a semimartingale in general. So, we cannot use the classical Itô’s calculus to explain how the memory properties of fBm allow us to describe some empirical findings of the implied volatility surface through Hull and White type formulas. Thus, Malliavin calculus provides a natural approach to deal with the implied volatility without assuming any particular structure of the volatility. The aim of this paper is to provides the basic tools of Malliavin calculus for the study of fractional volatility models. That is, we explain how the long and short memory of fBm improves the description of the implied volatility. In particular, we consider in detail a model that combines the long and short memory properties of fBm as an example of the approach introduced in this paper. The theoretical results are tested with numerical experiments.


Author(s):  
Przemyslaw S. Stilger ◽  
Ngoc Quynh Anh Nguyen ◽  
Tri Minh Nguyen

This paper examines the empirical performance of four stochastic volatility option pricing models: Heston, Heston[Formula: see text], Bates and Heston–Hull–White. To compare these models, we use individual stock options data from January 1996 to August 2014. The comparison is made with respect to pricing and hedging performance, implied volatility surface and risk-neutral return distribution characteristics, as well as performance across industries and time. We find that the Heston model outperforms the other models in terms of in-sample pricing, whereas Heston[Formula: see text] model outperforms the other models in terms of out-of-sample hedging. This suggests that taking jumps or stochastic interest rates into account does not improve the model performance after accounting for stochastic volatility. We also find that the model performance deteriorates during the crises as well as when the implied volatility surface is steep in the maturity or strike dimension.


2021 ◽  
Author(s):  
Pascal Francois ◽  
Rémi Galarneau-Vincent ◽  
Genevieve Gauthier ◽  
Frédéric Godin

2020 ◽  
Vol 18 (4) ◽  
pp. 115-137
Author(s):  
Zhang Qin ◽  
Caio Almeida

Accurately modeling the implied volatility surface is of great importance to option pricing, trading and hedging. In this paper, we investigate the use of a Bayesian nonparametric approach to fit and forecast the implied volatility surface with observed market data. More specifically, we explore Gaussian Processes with different kernel functions characterizing general covariance functions. We also obtain posterior distributions of the implied volatility and build confidence intervals for the predictions to assess potential model uncertainty. We apply our approach to market data on the S&P 500 index option market in 2018, analyzing 322,983 options. Our results suggest that the Bayesian approach is a powerful alternative to existing parametric pricing models


2020 ◽  
Vol 13 (11) ◽  
pp. 287
Author(s):  
Yixiao Jiang

This paper develops a test that helps assess whether the term structure of option implied volatility is constant across different levels of moneyness. The test is based on the Hausman principle of comparing two estimators, one that is efficient but not robust to the deviation being tested, and one that is robust but not as efficient. Distribution of the proposed test statistic is investigated in a general semiparametric setting via the multivariate Delta method. Using recent S&P 500 index traded options data from September 2009 to December 2018, we find that a partially linear model permitting a flexible “volatility smile” and an additive quadratic time effect is a statistically adequate depiction of the implied volatility data for most years. The constancy of implied volatility term structure, in turn, implies that option traders shall feel confident and execute volatility-based strategies using at-the-money options for its high liquidity.


Sign in / Sign up

Export Citation Format

Share Document