Empirical performance of stochastic volatility option pricing models

Author(s):  
Przemyslaw S. Stilger ◽  
Ngoc Quynh Anh Nguyen ◽  
Tri Minh Nguyen

This paper examines the empirical performance of four stochastic volatility option pricing models: Heston, Heston[Formula: see text], Bates and Heston–Hull–White. To compare these models, we use individual stock options data from January 1996 to August 2014. The comparison is made with respect to pricing and hedging performance, implied volatility surface and risk-neutral return distribution characteristics, as well as performance across industries and time. We find that the Heston model outperforms the other models in terms of in-sample pricing, whereas Heston[Formula: see text] model outperforms the other models in terms of out-of-sample hedging. This suggests that taking jumps or stochastic interest rates into account does not improve the model performance after accounting for stochastic volatility. We also find that the model performance deteriorates during the crises as well as when the implied volatility surface is steep in the maturity or strike dimension.

2014 ◽  
Vol 17 (01) ◽  
pp. 1450002 ◽  
Author(s):  
MASAAKI FUKASAWA

We revisit robust replication theory of volatility derivatives and introduce a broader class which may be considered as the second generation of volatility derivatives. One of them is a swap contract on the quadratic covariation between an asset price and the model-free implied variance (MFIV) of the asset. It can be replicated in a model-free manner and its fair strike may be interpreted as a model-free measure for the covariance of the asset price and the realized variance. The fair strike is given in a remarkably simple form, which enable to compute it from the Black–Scholes implied volatility surface. We call it the model-free implied leverage (MFIL) and give several characterizations. In particular, we show its simple relation to the Black–Scholes implied volatility skew by an asymptotic method. Further to get an intuition, we demonstrate some explicit calculations under the Heston model. We report some empirical evidence from the time series of the MFIV and MFIL of the Nikkei stock average.


2017 ◽  
Vol 04 (02n03) ◽  
pp. 1750024
Author(s):  
Elham Dastranj ◽  
Roghaye Latifi

Option pricing under two stochastic volatility models, double Heston model and double Heston with three jumps, is done. Firstly, the efficiency of the second model is shown via FFT method, and numerical examples using power call options. Then it is shown that power option yields more premium income under the second model, double Heston with three jumps, than another one.


2015 ◽  
Vol 47 (03) ◽  
pp. 837-857 ◽  
Author(s):  
Antoine Jacquier ◽  
Matthew Lorig

For any strictly positive martingaleS= eXfor whichXhas a characteristic function, we provide an expansion for the implied volatility. This expansion is explicit in the sense that it involves no integrals, but only polynomials in the log-strike. We illustrate the versatility of our expansion by computing the approximate implied volatility smile in three well-known martingale models: one finite activity exponential Lévy model, Merton (1976), one infinite activity exponential Lévy model (variance gamma), and one stochastic volatility model, Heston (1993). Finally, we illustrate how our expansion can be used to perform a model-free calibration of the empirically observed implied volatility surface.


2020 ◽  
Vol 18 (4) ◽  
pp. 115-137
Author(s):  
Zhang Qin ◽  
Caio Almeida

Accurately modeling the implied volatility surface is of great importance to option pricing, trading and hedging. In this paper, we investigate the use of a Bayesian nonparametric approach to fit and forecast the implied volatility surface with observed market data. More specifically, we explore Gaussian Processes with different kernel functions characterizing general covariance functions. We also obtain posterior distributions of the implied volatility and build confidence intervals for the predictions to assess potential model uncertainty. We apply our approach to market data on the S&P 500 index option market in 2018, analyzing 322,983 options. Our results suggest that the Bayesian approach is a powerful alternative to existing parametric pricing models


2019 ◽  
Vol 4 (51) ◽  
pp. 18-39
Author(s):  
Kokoszczyński Ryszard ◽  
Sakowski Paweł ◽  
Ślepaczuk Robert

Abstract In this study, we analyse the performance of option pricing models using 5-minutes transactional data for the Japanese Nikkei 225 index options. We compare 6 different option pricing models: the Black (1976) model with different assumptions about the volatility process (realized volatility with and without smoothing, historical volatility and implied volatility), the stochastic volatility model of Heston (1993) and the GARCH(1,1) model. To assess the model performance, we use median absolute percentage error based on differences between theoretical and transactional options prices. We present our results with respect to 5 classes of option moneyness, 5 classes of option time to maturity and 2 option types (calls and puts). The Black model with implied volatility (BIV) comes as the best and the GARCH(1,1) as the worst one. For both call and put options, we observe the clear relation between average pricing errors and option moneyness: high error values for deep OTM options and the best fit for deep ITM options. Pricing errors also depend on time to maturity, although this relationship depend on option moneyness. For low value options (deep OTM and OTM), we obtained lower errors for longer maturities. On the other hand, for high value options (ITM and deep ITM) pricing errors are lower for short times to maturity. We obtained similar average pricing errors for call and put options. Moreover, we do not see any advantage of much complex and time-consuming models. Additionally, we describe liquidity of the Nikkei225 option pricing market and try to compare the results we obtain here with a detailed study for Polish emerging option market (Kokoszczyński et al. 2010b).


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Shican Liu ◽  
Yanli Zhou ◽  
Yonghong Wu ◽  
Xiangyu Ge

In financial markets, there exists long-observed feature of the implied volatility surface such as volatility smile and skew. Stochastic volatility models are commonly used to model this financial phenomenon more accurately compared with the conventional Black-Scholes pricing models. However, one factor stochastic volatility model is not good enough to capture the term structure phenomenon of volatility smirk. In our paper, we extend the Heston model to be a hybrid option pricing model driven by multiscale stochastic volatility and jump diffusion process. In our model the correlation effects have been taken into consideration. For the reason that the combination of multiscale volatility processes and jump diffusion process results in a high dimensional differential equation (PIDE), an efficient finite element method is proposed and the integral term arising from the jump term is absorbed to simplify the problem. The numerical results show an efficient explanation for volatility smirks when we incorporate jumps into both the stock process and the volatility process.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 126
Author(s):  
Ying Chang ◽  
Yiming Wang ◽  
Sumei Zhang

Based on the present studies about the application of approximative fractional Brownian motion in the European option pricing models, our goal in the article is that we adopt the creative model by adding approximative fractional stochastic volatility to double Heston model with jumps since approximative fractional Brownian motion is more proper for application than Brownian motion in building option pricing models based on financial market data. We are the first to adopt the creative model. We derive the pricing formula for the options and the formula for the characteristic function. We also estimate the parameters with the loss function for the model and two nested models and compare the performance among those models based on the market data. The outcome illustrates that the model offers the best performance among the three models. It demonstrates that approximative fractional Brownian motion is more proper for application than Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document