proximal bundle method
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 13 (9) ◽  
pp. 4706
Author(s):  
Zhiyu Yan ◽  
Shengli Liao ◽  
Chuntian Cheng ◽  
Josué Medellín-Azuara ◽  
Benxi Liu

Short-term hydrothermal scheduling (STHS) can improve water use efficiency, reduce carbon emissions, and increase economic benefits by optimizing the commitment and dispatch of hydro and thermal generating units together. However, limited by the large system scale and complex hydraulic and electrical constraints, STHS poses great challenges in modeling for operators. This paper presents an improved proximal bundle method (IPBM) within the framework of Lagrangian relaxation for STHS, which incorporates the expert system (ES) technique into the proximal bundle method (PBM). In IPBM, initial values of Lagrange multipliers are firstly determined using the linear combination of optimal solutions in the ES. Then, each time PBM declares a null step in the iterations, the solution space is inferred from the ES, and an orthogonal design is performed in the solution space to derive new updates of the Lagrange multipliers. A case study in a large-scale hydrothermal system in China is implemented to demonstrate the effectiveness of the proposed method. Results in different cases indicate that IPBM is superior to standard PBM in global search ability and computational efficiency, providing an alternative for STHS.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jie Shen ◽  
Na Xu ◽  
Fang-Fang Guo ◽  
Han-Yang Li ◽  
Pan Hu

Abstract For nonlinear nonsmooth DC programming (difference of convex functions), we introduce a new redistributed proximal bundle method. The subgradient information of both the DC components is gathered from some neighbourhood of the current stability center and it is used to build separately an approximation for each component in the DC representation. Especially we employ the nonlinear redistributed technique to model the second component of DC function by constructing a local convexification cutting plane. The corresponding convexification parameter is adjusted dynamically and is taken sufficiently large to make the ”augmented” linearization errors nonnegative. Based on above techniques we obtain a new convex cutting plane model of the original objective function. Based on this new approximation the redistributed proximal bundle method is designed and the convergence of the proposed algorithm to a Clarke stationary point is proved. A simple numerical experiment is given to show the validity of the presented algorithm.


Author(s):  
Xiaoliang Wang ◽  
Liping Pang ◽  
Qi Wu

The bundle modification strategy for the convex unconstrained problems was proposed by Alexey et al. [[2007] European Journal of Operation Research, 180(1), 38–47.] whose most interesting feature was the reduction of the calls for the quadratic programming solver. In this paper, we extend the bundle modification strategy to a class of nonconvex nonsmooth constraint problems. Concretely, we adopt the convexification technique to the objective function and constraint function, take the penalty strategy to transfer the modified model into an unconstrained optimization and focus on the unconstrained problem with proximal bundle method and the bundle modification strategies. The global convergence of the corresponding algorithm is proved. The primal numerical results show that the proposed algorithms are promising and effective.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 874
Author(s):  
Xiaoliang Wang ◽  
Liping Pang ◽  
Qi Wu ◽  
Mingkun Zhang

In this paper, an adaptive proximal bundle method is proposed for a class of nonconvex and nonsmooth composite problems with inexact information. The composite problems are the sum of a finite convex function with inexact information and a nonconvex function. For the nonconvex function, we design the convexification technique and ensure the linearization errors of its augment function to be nonnegative. Then, the sum of the convex function and the augment function is regarded as an approximate function to the primal problem. For the approximate function, we adopt a disaggregate strategy and regard the sum of cutting plane models of the convex function and the augment function as a cutting plane model for the approximate function. Then, we give the adaptive nonconvex proximal bundle method. Meanwhile, for the convex function with inexact information, we utilize the noise management strategy and update the proximal parameter to reduce the influence of inexact information. The method can obtain an approximate solution. Two polynomial functions and six DC problems are referred to in the numerical experiment. The preliminary numerical results show that our algorithm is effective and reliable.


Sign in / Sign up

Export Citation Format

Share Document