gelfand transform
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
F. Albiac ◽  
O. Blasco ◽  
E. Briem

AbstractOne of the main results of the article Gelfand theory for real Banach algebras, recently published in [Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM 114(4):163, 2020] is Proposition 4.1, which establishes that the norm inequality $$\Vert a^{2}\Vert \le \Vert a^{2}+b^{2}\Vert $$ ‖ a 2 ‖ ≤ ‖ a 2 + b 2 ‖ for $$a,b\in {\mathcal {A}}$$ a , b ∈ A is sufficient for a commutative real Banach algebra $${\mathcal {A}}$$ A with a unit to be isomorphic to the space $${\mathcal {C}}_{{\mathbb {R}}}({\mathcal {K}})$$ C R ( K ) of continuous real-valued functions on a compact Hausdorff space $${\mathcal {K}}$$ K . Moreover, in this proposition is also shown that if the above condition (which involves all the operations of the algebra) holds, then the real-algebra isomorphism given by the Gelfand transform preserves the norm of squares. A very natural question springing from the above-mentioned result is whether an isomorphism of $${\mathcal {A}}$$ A onto $${\mathcal {C}}_{{\mathbb {R}}}({\mathcal {K}})$$ C R ( K ) is always norm-preserving of squares. This note is devoted to providing a negative answer to this problem. To that end, we construct algebra norms on spaces $${\mathcal {C}}_{{\mathbb {R}}}({\mathcal {K}})$$ C R ( K ) which are $$(1+\epsilon )$$ ( 1 + ϵ ) -equivalent to the sup-norm and with the norm of the identity function equal to 1, where the norm of every nonconstant function is different from the standard sup-norm. We also provide examples of two-dimensional normed real algebras $${\mathcal {A}}$$ A where $$\Vert a^2\Vert \le k \Vert a^2+b^2\Vert $$ ‖ a 2 ‖ ≤ k ‖ a 2 + b 2 ‖ for all $$a,b\in {\mathcal {A}}$$ a , b ∈ A , for some $$k>1$$ k > 1 , but the inequality fails for $$k=1$$ k = 1 .



2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Luis Roberto Hernández Chávez ◽  
Antoni Wawrzyńczyk
Keyword(s):  




2014 ◽  
Vol 199 (2) ◽  
pp. 236-246 ◽  
Author(s):  
M. Hinz ◽  
D. Kelleher ◽  
A. Teplyaev


2013 ◽  
Vol 94 (5-6) ◽  
pp. 814-815
Author(s):  
S. S. Akbarov
Keyword(s):  


2011 ◽  
Vol 108 (2) ◽  
pp. 264
Author(s):  
A. Ülger

Let $G$ be a compact abelian group, $M(G)$ its measure algebra and $L^{1}(G)$ its group algebra. For a subset $E$ of the dual group $\widehat{G}$, let $M_{E}(G)=\{\mu\in M(G):\widehat{\mu}=0$ on $\widehat{G} \backslash E\}$ and $L_{E}^{1}(G)=\{a\in L^{1}(G):\widehat{a}=0$ on $\widehat{G}\backslash E\}$. The set $E$ is said to be a Riesz set if $M_{E}(G)=L_{E}^{1}(G)$. In this paper we present several characterizations of the Riesz sets in terms of Arens multiplication and in terms of the properties of the Gelfand transform $\Gamma :L_{E}^{1}(G)\rightarrow c_{0}(E)$.



2011 ◽  
Vol 90 (1) ◽  
pp. 39-52 ◽  
Author(s):  
CHRIS HEUNEN ◽  
NICOLAAS P. LANDSMAN ◽  
BAS SPITTERS ◽  
SANDER WOLTERS

AbstractWe compare two influential ways of defining a generalized notion of space. The first, inspired by Gelfand duality, states that the category of ‘noncommutative spaces’ is the opposite of the category of C*-algebras. The second, loosely generalizing Stone duality, maintains that the category of ‘point-free spaces’ is the opposite of the category of frames (that is, complete lattices in which the meet distributes over arbitrary joins). Earlier work by the first three authors shows how a noncommutative C*-algebra gives rise to a commutative one internal to a certain sheaf topos. The latter, then, has a constructive Gelfand spectrum, also internal to the topos in question. After a brief review of this work, we compute the so-called external description of this internal spectrum, which in principle is a fibred point-free space in the familiar topos of sets and functions. However, we obtain the external spectrum as a fibred topological space in the usual sense. This leads to an explicit Gelfand transform, as well as to a topological reinterpretation of the Kochen–Specker theorem of quantum mechanics.



2011 ◽  
Vol 101 (1) ◽  
pp. 39-45 ◽  
Author(s):  
V. Karunakaran ◽  
R. Angeline Chella Rajathi


2010 ◽  
Vol 88 (3) ◽  
pp. 289-300 ◽  
Author(s):  
F. ALBIAC ◽  
E. BRIEM

AbstractA commutative complex unital Banach algebra can be represented as a space of continuous complex-valued functions on a compact Hausdorff space via the Gelfand transform. However, in general it is not possible to represent a commutative real unital Banach algebra as a space of continuous real-valued functions on some compact Hausdorff space, and for this to happen some additional conditions are needed. In this note we represent a commutative real Banach algebra on a part of its state space and show connections with representations on the maximal ideal space of the algebra (whose existence one has to prove first).



2007 ◽  
Vol 18 (04) ◽  
pp. 455-471 ◽  
Author(s):  
CHRISTIAN SVENSSON ◽  
SERGEI SILVESTROV ◽  
MARCEL DE JEU

In this paper, we describe the commutant of an arbitrary subalgebra A of the algebra of functions on a set X in a crossed product of A with the integers, where the latter act on A by a composition automorphism defined via a bijection of X. The resulting conditions which are necessary and sufficient for A to be maximal abelian in the crossed product are subsequently applied to situations where these conditions can be shown to be equivalent to a condition in topological dynamics. As a further step, using the Gelfand transform, we obtain for a commutative completely regular semi-simple Banach algebra a topological dynamical condition on its character space which is equivalent to the algebra being maximal abelian in a crossed product with the integers.



Sign in / Sign up

Export Citation Format

Share Document