planetary science
Recently Published Documents


TOTAL DOCUMENTS

1243
(FIVE YEARS 329)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Etienne Behar ◽  
Shahab Fatemi ◽  
Pierre Henri ◽  
Mats Holmström

Abstract. Despite the close relationship between planetary science and plasma physics, few advanced numerical tools allow to bridge the two topics. The code Menura proposes a breakthrough towards the self-consistent modelling of these overlapping field, in a novel 2-step approach allowing for the global simulation of the interaction between a fully turbulent solar wind and various bodies of the solar system. This article introduces the new code and its 2-step global algorithm, illustrated by a first example: the interaction between a turbulent solar wind and a comet.


Author(s):  
Roman A. EVDOKIMOV

A review of the reports of the last two Moscow International Symposia on Solar System Research has been completed. In the first part of the review, 43 reports of the main session of the "Mars" section are considered. The works of leading experts in the field of planetary science cover a wide range of scientific and applied problems - from the study of the geological history and climate of Mars, the search for traces of life and subsurface water reserves, to new technologies in planetary research, mission planning, as well as monitoring solar activity and radiation conditions in the interplanetary space, orbit and the surface of Mars. The data obtained in the last two decades has made it possible to significantly advance in understanding the nature of Mars, but many unresolved questions remain regarding the climate in the early era, the existence of the Martian oceans in the past, biological and geological activity. The scientific results obtained by unmanned spacecraft should be fully taken into account in the development of manned deep space exploration programs. Key words: Solar system, planetology, international symposium, deep space, automatic interplanetary stations, Mars, Moon, reports review


2021 ◽  
Author(s):  
I-Huan Chiu ◽  
Shin’ichiro Takeda ◽  
Meito Kajino ◽  
Atsushi Shinohara ◽  
Miho Katsuragawa ◽  
...  

Abstract Elemental analysis based on muonic X-rays resulting from muon irradiation provides information about bulk material composition without causing damage, which is essential in the case of precious or otherwise unreachable samples, such as in archeology and planetary science. We developed a three-dimensional (3D) elemental analysis technique by combining the elemental analysis method based on negative muons with an imaging cadmium telluride double-sided strip detector (CdTe-DSD) designed for the hard X-ray and soft γ-ray observation. A muon irradiation experiment using spherical plastic samples was conducted at the Japan Proton Accelerator Research Complex (J-PARC); a set of projection images was taken by the CdTe-DSD, equipped with a pinhole collimator, for different sample rotation angles. The projection images measured by the CdTe-DSD were utilized to obtain a 3D volumetric phantom by using the maximum likelihood expectation maximization algorithm. The reconstructed phantom successfully revealed the 3D distribution of carbon in the bulk samples and the stopping depth of the muons. This result demonstrated the feasibility of the proposed non-destructive 3D elemental analysis method for bulk material analysis based on muonic X-rays.


2021 ◽  
Author(s):  
Christine Shupla ◽  
Andrew Shaner ◽  
Sha'Rell Webb ◽  
Grace Beaudoin
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Akira Kouchi ◽  
Yuki Kimura ◽  
Kensei Kitajima ◽  
Hiroyasu Katsuno ◽  
Hiroshi Hidaka ◽  
...  

The occurrence of hydrogen atom-ordered form of ice Ih, ice XI, in the outer Solar System has been discussed based on laboratory experiments because its ferroelectricity influences the physical processes in the outer Solar System. However, the formation of ice XI in that region is still unknown due to a lack of formation conditions at temperatures higher than 72 K and the effect of UV-rays on the phase transition from ice I to ice XI. As a result, we observed the UV-irradiation process on ice Ih and ice Ic using a newly developed ultra-high vacuum cryogenic transmission electron microscope. We found that ice Ih transformed to ice XI at temperatures between 75 and 140 K with a relatively small UV dose. Although ice Ic partially transformed to ice XI at 83 K, the rate of transformation was slower than for ice Ih. These findings point to the formation of ice XI at temperatures greater than 72 K via UV irradiation of ice I crystals in the Solar System; icy grains and the surfaces of icy satellites in the Jovian and Saturnian regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Albert D. Grauer ◽  
Patricia A. Grauer

AbstractThis paper presents time-series observations and analysis of broadband night sky airglow intensity 4 September 2018 through 30 April 2020. Data were obtained at 5 sites spanning more than 8500 km during the historically deep minimum of Solar Cycle 24 into the beginning of Solar Cycle 25. New time-series observations indicate previously unrecognized significant sources of broadband night sky brightness variations, not involving corresponding changes in the Sun's 10.7 cm solar flux, occur during deep solar minimum. New data show; (1) Even during a deep solar minimum the natural night sky is rarely, if ever, constant in brightness. Changes with time-scales of minutes, hours, days, and months are observed. (2) Semi-annual night sky brightness variations are coincident with changes in the orientation of Earth's magnetic field relative to the interplanetary magnetic field. (3) Solar wind plasma streams from solar coronal holes arriving at Earth’s bow shock nose are coincident with major night sky brightness increase events. (4) Sites more than 8500 km along the Earth's surface experience nights in common with either very bright or very faint night sky airglow emissions. The reason for this observational fact remains an open question. (5) It is plausible, terrestrial night airglow and geomagnetic indices have similar responses to the solar energy input into Earth's magnetosphere. Our empirical results contribute to a quantitative basis for understanding and predicting broadband night sky brightness variations. They are applicable in astronomical, planetary science, space weather, light pollution, biological, and recreational studies.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Wei Zuo ◽  
Chunlai Li ◽  
Zhoubin Zhang ◽  
Xingguo Zeng ◽  
Yuxuan Liu ◽  
...  

AbstractData infrastructure systems such as the National Aeronautics and Space Administration (NASA) Planetary Data System (PDS), European Space Agency (ESA) Planetary Data Archive (PSA)and Japan Aerospace Exploration Agency (JAXA) Data Archive and Transmission System (DARTS) archive large amounts of scientific data obtained through dozens of planetary exploration missions and have made great contributions to studies of lunar and planetary science. Since China started lunar exploration activities in 2007, the Ground Research and Application System (GRAS), one of the five systems developed as part of China’s Lunar Exploration Program (CLEP) and the Planetary Exploration of China (PEC), has gradually established China’s Lunar and Planetary Data System (CLPDS), which involves the archiving, management and long-term preservation of scientific data from China’s lunar and planetary missions; additionally, data are released according to the policies established by the China National Space Administration (CNSA). The scientific data archived by the CLPDS are among the most important achievements of the CLEP and PEC and provide a resource for the international planetary science community. The system plays a key and important role in helping scientists obtain fundamental and original research results, advancing studies of lunar and planetary science in China, and improving China’s international influence in the field of lunar and planetary exploration. This paper, starting from CLEP and PEC mission planning, explains the sources, classification, format and content of the lunar and Mars exploration data archived in the CLPDS. Additionally, the system framework and core functions of the system, such as data archiving, management and release, are described. The system can be used by the international planetary science community to comprehensively understand the data obtained in the CLEP and PEC, help scientists easily access and better use the available data resources, and contribute to fundamental studies of international lunar and planetary science. Moreover, since China has not yet systematically introduced the CLPDS, through this article, international data organizations could learn about this advanced system. Therefore, opportunities for international data cooperation can be created, and the data service capability of the CLPDS can be improved, thus promoting global data sharing and application for all humankind.


2021 ◽  
Vol 41 (6) ◽  
pp. 415-423
Author(s):  
Amit Nath ◽  
Sibsankar Jana ◽  
Patit Paban Santra

The scientific community considers readership analysis of academic artifacts to be a significant endeavor. The reference manager’s readership count is a momentous indication for early research evaluation. In response, this study demonstrates the characteristics of Mendeley readership for EPS articles from twelve narrow disciplines and compares them with citations. The bibliographic and citation data have been collected from Scopus and the corresponding readers’ data from Mendeley. The Spearman correlation was performed among citations and readers for all unique articles for all investigated disciplines. Further, we also looked at the relationships between articles with non-zero readers, as well as articles satisfied by percentile ranking of the top 75 per cent, 50 per cent, and 25 per cen treaders. The result indicates large correlations among citations and readers (avg. 0.669) for all investigated disciplines. If we analysed only non-zero readers, as well as a percentile ranking of articles, the correlation results show a decreasing trend. Around 98.57 per cent of articles have at least one reader in Mendeley and AS (97.53 %) discipline has registered the highest one. The CES discipline had registered the largest MRS of 32.25 and MCS of 12.75. Most of the readers come from post-doctoral students and Ph.D. students. The correlation results indicate that the readership statistics should be used as an impact indicator for EPS discipline.


2021 ◽  
Vol 20 (11) ◽  
pp. 2083-2084
Author(s):  
Okan Yurduseven ◽  
Mohsen Khalily ◽  
Symon Podilchak ◽  
Goutam Chattopadhyay ◽  
Nelson Fonseca

Author(s):  
P. Vernazza ◽  
P. Beck ◽  
O. Ruesch ◽  
A. Bischoff ◽  
L. Bonal ◽  
...  

AbstractThe last thirty years of cosmochemistry and planetary science have shown that one major Solar System reservoir is vastly undersampled in the available suite of extra-terrestrial materials, namely small bodies that formed in the outer Solar System (>10 AU). Because various dynamical evolutionary processes have modified their initial orbits (e.g., giant planet migration, resonances), these objects can be found today across the entire Solar System as P/D near-Earth and main-belt asteroids, Jupiter and Neptune Trojans, comets, Centaurs, and small (diameter < 200 km) trans-Neptunian objects. This reservoir is of tremendous interest, as it is recognized as the least processed since the dawn of the Solar System and thus the closest to the starting materials from which the Solar System formed. Some of the next major breakthroughs in planetary science will come from studying outer Solar System samples (volatiles and refractory constituents) in the laboratory. Yet, this can only be achieved by an L-class mission that directly collects and returns to Earth materials from this reservoir. It is thus not surprising that two White Papers advocating a sample return mission of a primitive Solar System small body (ideally a comet) were submitted to ESA in response to its Voyage 2050 call for ideas for future L-class missions in the 2035-2050 time frame. One of these two White Papers is presented in this article.


Sign in / Sign up

Export Citation Format

Share Document