evolutionary art
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Francisco Fernández de Vega ◽  
Cayetano Cruz ◽  
Patricia Hernández ◽  
Mario García-Valdez
Keyword(s):  

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1311
Author(s):  
Yuchen Wang ◽  
Rong Xie

We proposed a pixel-based evolution method to automatically generate evolutionary art. Our method can generate diverse artworks, including original artworks and imitating artworks, with different artistic styles and high visual complexity. The generation process is fully automated. In order to adapt to the pixel-based method, a von Neumann neighbor topology-modified particle swarm optimization (PSO) is employed to the proposed method. The fitness functions of PSO are well prepared. Firstly, we come up with a set of aesthetic fitness functions. Next, the imitating fitness function is designed. Finally, the aesthetic fitness functions and the imitating fitness function are weighted into one single object function, which is used in the modified PSO. Both the original outputs and imitating outputs are shown. A questionnaire is designed to investigate the subjective aesthetic feeling of proposed evolutionary art, and the statistics are shown.


Author(s):  
Simon Colton ◽  
Jon McCormack ◽  
Sebastian Berns ◽  
Elena Petrovskaya ◽  
Michael Cook
Keyword(s):  

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Colin G. Johnson ◽  
Jon McCormack ◽  
Iria Santos ◽  
Juan Romero

One of the general aims of evolutionary art research is to build a computer system capable of creating interesting, beautiful, or creative results, including images, videos, animations, text, and performances. In this context, it is crucial to understand how fitness is conceived and implemented to explore the “interestingness,” beauty, or creativity that the system is capable of. In this paper, we survey the recent research on fitness for evolutionary art related to aesthetics. We also cover research in the psychology of aesthetics, including relation between complexity and aesthetics, measures of complexity, and complexity predictors. We try to establish connections between human perception and understanding of aesthetics with current evolutionary techniques.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Adrian Carballal ◽  
Carlos Fernandez-Lozano ◽  
Nereida Rodriguez-Fernandez ◽  
Luz Castro ◽  
Antonino Santos

An important topic in evolutionary art is the development of systems that can mimic the aesthetics decisions made by human begins, e.g., fitness evaluations made by humans using interactive evolution in generative art. This paper focuses on the analysis of several datasets used for aesthetic prediction based on ratings from photography websites and psychological experiments. Since these datasets present problems, we proposed a new dataset that is a subset of DPChallenge.com. Subsequently, three different evaluation methods were considered, one derived from the ratings available at DPChallenge.com and two obtained under experimental conditions related to the aesthetics and quality of images. We observed different criteria in the DPChallenge.com ratings, which had more to do with the photographic quality than with the aesthetic value. Finally, we explored learning systems other than state-of-the-art ones, in order to predict these three values. The obtained results were similar to those using state-of-the-art procedures.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Michael Gircys ◽  
Brian J. Ross

Procedurally generated images and textures have been widely explored in evolutionary art. One active research direction in the field is the discovery of suitable heuristics for measuring perceived characteristics of evolved images. This is important in order to help influence the nature of evolved images and thereby evolve more meaningful and pleasing art. In this regard, particular challenges exist for quantifying aspects of style and shape. In an attempt to bridge the divide between computer vision and cognitive perception, we propose the use of measures related to image spatial frequencies. Based on existing research that uses power spectral density of spatial frequencies as an effective metric for image classification and retrieval, we posit that Fourier decomposition can be effective for guiding image evolution. We refine fitness measures based on Fourier analysis and spatial frequency and apply them within a genetic programming environment for image synthesis. We implement fitness strategies using 2D Fourier power spectra and phase, with the goal of evolving images that share spectral properties of supplied target images. Adaptations and extensions of the fitness strategies are considered for their utility in art systems. Experiments were conducted using a variety of greyscale and colour target images, spatial fitness criteria, and procedural texture languages. Results were promising, in that some target images were trivially evolved, while others were more challenging to characterize. We also observed that some evolved images which we found discordant and “uncomfortable” show a previously identified spectral phenomenon. Future research should further investigate this result, as it could extend the use of 2D power spectra in fitness evaluations to promote new aesthetic properties.


Sign in / Sign up

Export Citation Format

Share Document