spin valve
Recently Published Documents


TOTAL DOCUMENTS

1975
(FIVE YEARS 184)

H-INDEX

70
(FIVE YEARS 8)

Author(s):  
Xiaomin Cui ◽  
Shaojie Hu ◽  
Takashi Kimura

Abstract Lateral spin valves are ideal nanostructures for investigating spin-transport physics phenomena and promoting the development of future spintronic devices owing to dissipation-less pure spin current. The magnitude of the spin accumulation signal is well understood as a barometer for characterizing spin current devices. Here, we develop a novel fabrication method for lateral spin valves based on ferromagnetic nanopillar structures using a multi-angle deposition technique. We demonstrate that the spin-accumulation signal is effectively enhanced by reducing the lateral dimension of the nonmagnetic spin channel. The obtained results can be quantitatively explained by the confinement of the spin reservoir by considering spin diffusion into the leads. The temperature dependence of the spin accumulation signal and the influence of the thermal spin injection under a high bias current are also discussed.


Author(s):  
MengYao Li ◽  
Qingyun Yu ◽  
Jingguo Hu ◽  
TingMin Liu ◽  
Yong Chun Tao ◽  
...  

Abstract Recently, theory and experiment both have confirmed a Majorana zero mode to induce selective equal spin Andreev reflection (SESAR). Herein, we theoretically present controllable chiral Majorana modes (CMMs) by noncollinear magnetic configuration in a Josephson junction on a topological insulator with two ferromagnetic insulators (FIs) sandwiched in between two superconductors (SCs). It is shown that an additional phase shift is induced by the different chirality of the CMMs at the two FI/SC interfaces, whose magnitude is determined by misorientational angle θ, which can be administrated by the Andreev bound surface energies. The angle θ is found to result in the 0-π state transition and Φ0 supercurrent. Particularly, due to the SESAR, the coexistence of fully spin-polarized spin-singlet and -triplet correlations is exhibited with the exclusive fully spin-polarized spin-triplet (singlet) correlation corresponding to the ferromagnetic (F) [antiferromagnetic (AF)] configuration. For the two magnetizations only along y-axis, there exist no additional phase shift and topological supercurrent with fully spin-polarized correlations, especially, the supercurrent in the AF configuration is a lot larger than that in the F one, which is strongly dependent on the exchange field strength and FI length, thus even leading to 100% supercurrent magnetoresistance. The results can be employed to not only identify the topological SCs but also design a perfect topological supercurrent spin valve device.


Author(s):  
Nataliya Pugach ◽  
Dennis Heim ◽  
Dmitriy Seleznyov ◽  
Alexander Chernov ◽  
Dirk Menzel

Abstract We propose a superconducting spin valve based on a Josephson junction with B20-family magnetic metal as barrier material. Our analysis shows that the states of this element can be switched by reorienting the intrinsic non-collinear magnetization of the spiral magnet. This reorientation modifies long-range spin-triplet correlations and thereby influences strongly the critical Josephson current. Compared to superconducting spin valves proposed earlier, our device has the following advantages: (i) it contains only one barrier layer, which makes it easier to fabricate and control; (ii) its ground state is stable, which prevents uncontrolled switching; (iii) it is compatible with devices of low-T Josephson electronics. This device may switch between two logical states which exhibit two different values of critical current, or its positive and negative value. I.e. 0-π switch is achievable on one simple Josephson junction.


Author(s):  
M.A. Jafari ◽  
M. Wawrzyniak-Adamczewska ◽  
S. Stagraczyński ◽  
A. Dyrdal ◽  
J. Barnaś

2021 ◽  
Vol 2132 (1) ◽  
pp. 012040
Author(s):  
Mengli Liu ◽  
Wei Du ◽  
Hua Su ◽  
Bo Liu ◽  
Hao Meng ◽  
...  

Abstract This work reports an energy-efficient strategy for realizing linear unipolar giant magnetoresistance (GMR) switch by using electric fields (E-fields). Herein, a modified spin-valve (SV) structure of double antiferromagnetic (AFM) pinning layers was adopted. Since the magnetization direction of ferromagnetic (FM) layer can be controlled via the strain-mediated magnetoelectric (ME) effect, a multiferroic heterostructure of SV/PMN-PT was fabricated. By applying an E-field on the PMN-PT substrate, an effective magnetic field Heff was produced along the [1-10] direction of PMN-PT. It can turn the magnetic moments of FM layer toward [1-10] direction. Accordingly, a linear GMR curve with a wide sensing field range was achieved. This E-field-induced linear magnetic switch can satisfy the demand for different switching field ranges in the same application system.


2D Materials ◽  
2021 ◽  
Author(s):  
C.K. Safeer ◽  
Franz Herling ◽  
Won Young Choi ◽  
Nerea Ontoso ◽  
Josep Ingla-Aynés ◽  
...  

Abstract Understanding spin physics in graphene is crucial for developing future two- dimensional spintronic devices. Recent studies show that efficient spin-to-charge conversions via either the inverse spin Hall effect or the inverse Rashba-Edelstein effect can be achieved in graphene by proximity with an adjacent spin-orbit coupling material. Lateral spin valve devices, made up of a graphene Hall bar and ferromagnets, are best suited for such studies. Here, we report that signals mimicking the inverse Rashba-Edelstein effect can be measured in pristine graphene possessing negligible spin-orbit coupling, confirming that these signals are unrelated to spin-to-charge conversion. We identify either the anomalous Hall effect in the ferromagnet or the ordinary Hall effect in graphene induced by stray fields as the possible sources of this artefact. By quantitatively comparing these options with finite-element-method simulations, we conclude the latter better explains our results. Our study deepens the understanding of spin-to-charge conversion measurement schemes in graphene, which should be taken into account when designing future experiments.


2021 ◽  
Vol 119 (19) ◽  
pp. 192404
Author(s):  
A. Yamada ◽  
M. Yamada ◽  
M. Honda ◽  
S. Yamada ◽  
K. Sawano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document