colliding gravitational waves
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 35 (18) ◽  
pp. 2050150
Author(s):  
Dong-Dong Wei ◽  
Xin-He Meng ◽  
Bin Wang

The degenerate Ferrari-Ibanez solution describes the collision of plane gravitational waves with aligned linear polarization, within the interaction region, the solution is Schwarzschild-like metric, which impels us to be more interesting to analyze the collision process. In this paper, we have considered the electrodynamics effects on the colliding gravitational waves background. Moreover, we have calculated explicitly out the solutions of the electromagnetic waves produced by the plane gravitational wave and the colliding region of plane gravitational waves perturbing a weak magnetic field background. We also work out the solutions of these electromagnetic waves after crossing out a weak magnetic field background.


1991 ◽  
Vol 32 (9) ◽  
pp. 2478-2482
Author(s):  
Wei Li ◽  
Isidore Hauser ◽  
Frederick J. Ernst

1991 ◽  
Vol 32 (4) ◽  
pp. 1025-1029 ◽  
Author(s):  
Wei Li ◽  
Isidore Hauser ◽  
Frederick J. Ernst

Colliding plane gravitational waves that lead to the development of a horizon and a subsequent time-like singularity are coupled with an electromagnetic field, a perfect fluid (whose energy density, ∊ , equals the pressure, p ), and null dust (consisting of massless particles). The coupling of the gravitational waves with an electromagnetic field does not affect, in any essential way, the development of the horizon or the time-like singularity if the polarizations of the colliding gravitational waves are not parallel. If the polarizations are parallel, the space-like singularity which occurs in the vacuum is transformed into a horizon followed by a three-dimensional time-like singularity by the merest presence of the electromagnetic field. The coupling of the gravitational waves with an ( ∊ = p )-fluid and null dust affect the development of horizons and singularities in radically different ways: the ( ∊ = p )-fluid affects the development decisively in all cases but qualitatively in the same way, while null dust prevents the development of horizons and allows only the development of space-like singularities. The contrasting behaviours of an ( ∊ = p )-fluid and of null dust in the framework of general relativity is compared with the behaviours one may expect, under similar circumstances, in the framework of special relativity.


An exact solution is obtained for colliding plane impulsive gravitational waves accompanied by shock waves, which, in contrast to other known solutions, results in the development of a null surface which acts like an event horizon. The analytic extension of the solution across the null surface reveals the existence of time-like curvature singularities along two hyperbolic arcs in the extended domain, reminiscent of the ring singularity of the Kerr metric. Besides, the space-time, in the region of the interaction of the colliding waves, is of Petrov-type D and locally isometric to the Kerr space-time in a region interior to the ergosphere. Various other aspects of the solution are also discussed.


Sign in / Sign up

Export Citation Format

Share Document