friedmann robertson walker
Recently Published Documents


TOTAL DOCUMENTS

375
(FIVE YEARS 52)

H-INDEX

32
(FIVE YEARS 5)

Author(s):  
Albert Much ◽  
Robert Oeckl

Abstract We develop a rigorous method to parametrize complex structures for Klein-Gordon theory in globally hyperbolic spacetimes that satisfy a completeness condition. The complex structures are conserved under time-evolution and implement unitary quantizations. They can be interpreted as corresponding to global choices of vacuum. The main ingredient in our construction is a system of operator differential equations. We provide a number of theorems ensuring that all ingredients and steps in the construction are well-defined. We apply the method to exhibit natural quantizations for certain classes of globally hyperbolic spacetimes. In particular, we consider static, expanding and Friedmann-Robertson-Walker spacetimes. Moreover, for a huge class of spacetimes we prove that the differential equation for the complex structure is given by the Gelfand-Dikki equation.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012054
Author(s):  
O V Razina ◽  
P Yu Tsyba ◽  
N T Suikimbayeva

Abstract In this work, it is shown that the equations of motion of the scalar field for spatially flat, homogeneous, and isotropic space-time Friedmann-Robertson-Walker have a form-invariance symmetry, which is arising from the form invariance transformation. Form invariance transformation is defined by linear function ρ = n 2 ρ in general case. It is shown the method of getting potential and the scalar field for the power law scale factor. The initial model is always stable at exponent of the scale factor α > 1, but stability of the transformation model depends on index n. Slow roll parameters and spectral induces is obtained and at large α they agree with Planck observation data.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Sunly Khimphun ◽  
Bum-Hoon Lee ◽  
Gansukh Tumurtushaa

Abstract Four-dimensional cosmological models are studied on a boundary of a five-dimensional Anti-de Sitter (AdS5) black hole with AdS Reissner-Nordström and scalar charged Reissner-Nordström black hole solutions, where we call the former a “Hairless” black hole and the latter a “Hairy” black hole. To obtain the Friedmann-Robertson-Walker (FRW) spacetime metric on the boundary of the AdS5 black hole, we employ Eddington-Finkelstein (EF) coordinates to the bulk geometry. We then derive modified Friedmann equations on a boundary of the AdS5 black hole via AdS/CFT correspondence and discuss its cosmological implications. The late-time acceleration of the universe is investigated in our models. The contributions coming from the bulk side is treated as dark energy source, and we perform MCMC analyses using observational data. Compared to the ΛCDM model, our models contain additional free parameters; therefore, to make a fair comparison, we use the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) to analyze our results. Our numerical analyses show that our models can explain the observational data as reliable as the ΛCDM model does for the current data.


2021 ◽  
Vol 13 (3) ◽  
pp. 779-784
Author(s):  
P. Das ◽  
K. P. Singh

In this paper, we study the Polytropic Gas Dark Energy model and New Agegraphic Dark Energy model in the flat Friedmann Robertson Walker (FRW) Universe and establish a correspondence between them for the scalar fields. This correspondence allows reconstructing the potential of the Polytropic Gas scalar fields and dynamics of the scalar fields according to the evolutions of the New Agegraphic Dark Energy, which describes the accelerated expansion of the Universe.


Author(s):  
I. Brevik ◽  
A. V. Timoshkin

We explore the cosmological models of the late-time universe based on the holographic principle, taking into account the properties of the viscosity of the dark fluid. We use the mathematical formalism of generalized infrared cutoff holographic dark energy, as presented by Nojiri and Odintsov [Covariant generalized holographic dark energy and accelerating universe, Eur. Phys. J. C 77 (2017) 528]. We consider the Little Rip, the Pseudo Rip, and a bounce exponential model, with two interacting fluids, namely dark energy and dark matter in a spatially-flat Friedmann–Robertson–Walker universe. Within these models, analytical expressions are obtained for infrared cutoffs in terms of the particle horizons. The law of conservation of energy is presented, from a holographic point of view.


Author(s):  
R. K. Tiwari ◽  
D. Sofuoğlu ◽  
A. Beesham

In this study, Friedmann–Robertson–Walker space-time filled with a perfect fluid in [Formula: see text] modified theory, where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of the energy–momentum tensor of matter, has been considered. The investigation of the phase transition of the universe from the decelerating expansion phase to the accelerating one has been made by adopting a special form of the varying deceleration parameter that is inversely proportional to the Hubble parameter. The exact solution of the field equations has been derived. The kinematic and dynamical quantities of the model have been obtained and their evolutions have been discussed by means of their graphs. The statefinder diagnostic has been used and the age of the universe has been computed for testing the validity of the model. It has been shown that the dominant energy of the model is ordinary matter which behaves as the SCDM model at the beginning and it is a quintessence like fluid which behaves as the [Formula: see text]CDM model at late times.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Hamza Boumaza

AbstractIn this present paper, we study the cosmological evolution of the cubic galileon along with modified teleparallel gravity at perturbed and non-perturbed levels. We show the dynamical equations of motion and investigate the evolution of different cosmological parameters by using the dynamical variables analysis. In addition, a detailed analysis of different cosmological evolution in the matter, radiation and de Sitter eras is presented by solving the dynamical equations numerically. In our analysis, we find that the equations of motion in the Friedmann–Robertson–Walker (FRW) background metric is characterized by a stable de Sitter era and a tracker solution in which $$H{\dot{\varphi }}$$ H φ ˙ is always constant. We find also that the equation of state of dark energy associated to the proposed model in this work can deviate from − 2 at the matter era. Moreover, the conditions of avoiding ghost and Laplacian instabilities in our model are derived; then we show that the model is free of these instabilities. Furthermore we place an observational constraint on the parameters of the model through Monte Carlo numerical method using growth rate and observational Hubble data. Finally, using the best-fit values of parameters in the model we compare our growth rate of matter perturbation with the prediction of $$\varLambda $$ Λ CDM model and the latest measurement.


Author(s):  
Geraint F. Lewis ◽  
Luke A. Barnes

Abstract In Einstein’s special theory of relativity, all observers measure the speed of light, c, to be the same. However, this refers to the round-trip speed, where a clock at the origin times the outward and return trip of light reflecting off a distant mirror. Measuring the one-way speed of light is fraught with issues of clock synchronisation, and, as long as the average speed of light remains c, the speeds on the outward and return legs could be different. One objection to this anisotropic speed of light is that views of the distant universe would be different in different directions, especially with regard to the ages of observed objects and the smoothness of the Cosmic Microwave Background. In this paper, we explore this in the Milne universe, the limiting case of a Friedmann–Robertson–Walker universe containing no matter, radiation, or dark energy. Given that this universe is empty, it can be mapped onto flat Minkowski space-time and so can be explored in terms of the one-way speed of light. The conclusion is that the presence of an anisotropic speed of light leads to anisotropic time dilation effects, and hence observers in the Milne universe would be presented with an isotropic view of the distant cosmos.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Behzad Tajahmad ◽  
Hossein Motavalli

AbstractRecently, a Friedmann–Robertson–Walker universe filled with various cosmological fluids has been considered by Odintsov et al. (Phys Rev D 96:044022, 2017) from phase space vantage point where various expressions for the Equation-of-State (EoS) parameter were studied. Since these types of EoS parameters are generative of appreciable results in the Hilbert–Einstein model, hence we intend to investigate all the cases in a homogeneous F(T)-gravity (T is the torsion) through phase space analysis in precise detail. In short, three viable models of interaction between dark matter and dark energy, including usual-type, power-law type, and oscillating type, are investigated comprehensively. It is indicated that the power-law interaction in the related dynamical systems should be of increasing nature with time to get more critical points. Due to the failure of the oscillating model of Odintsov et al. (2017) in F(T)-gravity, four modified models are suggested and examined in both F(T) and Hilbert–Einstein models. As to be seen, the modified models not only are generative of critical points equivalent to that of Odintsov et al. (2017), but also give rise to further critical points covering crucial stages of the evolution of the universe. In the context of these four models, such as the old one, at early times the interactions are negligible and they commence to grow as the cosmic time approaches the late-time in which the unification of early inflation and late acceleration is obtained. Using an indirect method, it is shown that the oscillating models have substantial roles in transitions between eras.


Author(s):  
Umesh Kumar Sharma

In the present work, we construct the Tsallis holographic quintessence model of dark energy in [Formula: see text] gravity with Hubble horizon as infrared (IR) cut-off. In a flat Friedmann–Robertson–Walker (FRW) background, the correspondence among the energy density of the quintessence model with the Tsallis holographic density permits the reconstruction of the dynamics and the potentials for the quintessence field. The suggested Hubble horizon IR cut-off for the Tsallis holographic dark energy (THDE) density acts for two specific cases: (i) THDE 1 and (ii) THDE 2. We have reconstructed the Tsallis holographic quintessence model in the region [Formula: see text] for the equation of state (EoS) parameter for both the cases. we investigate the behavior of several well-known statefinder quantities, like the deceleration parameter, the jerk and the parameter [Formula: see text]. In addition, the quintessence phase of the THDE models is analyzed with swampland conjecture to describe the accelerated expansion of the Universe.


Sign in / Sign up

Export Citation Format

Share Document