scholarly journals The evolutions of the innermost stable circular orbits in dynamical spacetimes

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Yong Song

AbstractIn this paper, we studied the evolutions of the innermost stable circular orbits (ISCOs) in dynamical spacetimes. At first, we reviewed the method to obtain the ISCO in Schwarzschild spacetime by varying its conserved orbital angular momentum. Then, we demonstrated this method is equivalent to the effective potential method in general static and stationary spacetimes. Unlike the effective potential method, which depends on the presence of the conserved orbital energy, this method requires the existence of conserved orbital angular momentum in spacetime. So it can be easily generalized to the dynamical spacetimes where there exists conserved orbital angular momentum. From this generalization, we studied the evolutions of the ISCOs in Vaidya spacetime, Vaidya-AdS spacetime and the slow rotation limit of Kerr–Vaidya spacetime. The results given by these examples are all reasonable and can be compared with the evolutions of the photon spheres in dynamical spacetimes.

2016 ◽  
Vol 25 (03) ◽  
pp. 1650034 ◽  
Author(s):  
M. Jakir Hossain ◽  
M. Atiqur Rahman ◽  
M. Ilias Hossain

We consider the motion of a test particle orbiting around Reissner–Nordström (RN) black hole spacetime. The complete set of equations for radial motion and effective potential is derived. We also derive the radius of the different stable circular orbits of this particle corresponding to different label indexes like the Bohr atomic model. We also quantized the energy of this particle from the quantization of angular momentum and calculated the Bekenstein–Hawking entropy of RN black hole. We also investigate the change of entropy between two nearby states approaches to zero for large quantum numbers.


2004 ◽  
Vol 194 ◽  
pp. 30-32
Author(s):  
Noam Soker

AbstractI consider three processes which enhance mass loss rate from a common envelope of a giant star with a main sequence or a white dwarf companion spiraling-in inside its envelope. I consider deposition of orbital energy and orbital angular momentum to the giant's envelope, and the formation of jets by an accreting companion and their propagation in the envelope. I find that in many cases the deposition of orbital angular momentum to the envelope may be more important to the mass loss process than the deposition of orbital energy. Jets blown by an accreting companion, in particular a white dwarf, orbiting inside the outer regions of the giant's envelope may also dominate over orbital energy deposition at early stage of the common envelope evolution. These imply that, studies which ignore the deposition of angular momentum to the envelope and the effects of the accreting companion may reach wrong conclusions.


2019 ◽  
Vol 34 (32) ◽  
pp. 1950208 ◽  
Author(s):  
G. Abbas ◽  
N. Yousaf ◽  
M. Zubair ◽  
Rabia Saleem

In this paper, we have explored the behavior of dynamics of neutral test particles near the brane-world black hole (BH). We have discussed the stability/instability near the circular orbits with the help of extremal and nonextremal BH. In this consideration, we investigate the last stable circular orbit [Formula: see text] that decreases with the increase of black hole parameters and concluded that the circular orbits are stable at [Formula: see text]. The effective potential vanishes at horizon in extremal BH. In case of nonextremal BH, the angular momentum decreases, whereas energy increases with the increase in dark parameter [Formula: see text]. Moreover, we find the conditions for the naked singularity and also express the effective potential that increases with the increase of angular momentum. Finally, the center-of-mass energy (CME) is constructed by the collision of particles in the vicinity of brane-world black hole and observed that the CME decreases with the increase of black hole parameters.


Author(s):  
Ryohei Yamagishi ◽  
Hiroto Otsuka ◽  
Ryo Ishikawa ◽  
Akira Saitou ◽  
Hiroshi Suzuki ◽  
...  

2020 ◽  
Vol 117 (19) ◽  
pp. 191101
Author(s):  
Wenpu Geng ◽  
Yiqiao Li ◽  
Yuxi Fang ◽  
Yingning Wang ◽  
Changjing Bao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Zhao ◽  
Runzhou Zhang ◽  
Hao Song ◽  
Kai Pang ◽  
Ahmed Almaiman ◽  
...  

AbstractOrbital-angular-momentum (OAM) multiplexing has been utilized to increase the channel capacity in both millimeter-wave and optical domains. Terahertz (THz) wireless communication is attracting increasing attention due to its broadband spectral resources. Thus, it might be valuable to explore the system performance of THz OAM links to further increase the channel capacity. In this paper, we study through simulations the fundamental system-degrading effects when using multiple OAM beams in THz communications links under atmospheric turbulence. We simulate and analyze the effects of divergence, turbulence, limited-size aperture, and misalignment on the signal power and crosstalk of THz OAM links. We find through simulations that the system-degrading effects are different in two scenarios with atmosphere turbulence: (a) when we consider the same strength of phasefront distortion, faster divergence (i.e., lower frequency; smaller beam waist) leads to higher power leakage from the transmitted mode to neighbouring modes; and (b) however, when we consider the same atmospheric turbulence, the divergence effect tends to affect the power leakage much less, and the power leakage increases as the frequency, beam waist, or OAM order increases. Simulation results show that: (i) the crosstalk to the neighbouring mode remains < − 15 dB for a 1-km link under calm weather, when we transmit OAM + 4 at 0.5 THz with a beam waist of 1 m; (ii) for the 3-OAM-multiplexed THz links, the signal-to-interference ratio (SIR) increases by ~ 5–7 dB if the mode spacing increases by 1, and SIR decreases with the multiplexed mode number; and (iii) limited aperture size and misalignment lead to power leakage to other modes under calm weather, while it tends to be unobtrusive under bad weather.


Sign in / Sign up

Export Citation Format

Share Document