exponential red
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laurent Lermusiaux ◽  
Marie Plissonneau ◽  
Laure Bertry ◽  
Glenna L. Drisko ◽  
Valérie Buissette ◽  
...  

AbstractNanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometer-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, due to an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core, but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.


2021 ◽  
Author(s):  
Laurent Lermusiaux ◽  
Marie Plissonneau ◽  
Laure Bertry ◽  
Glenna L. Drisko ◽  
Valérie Buissette ◽  
...  

Abstract Nanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometre-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, as a result of an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.


2020 ◽  
Vol 48 (9) ◽  
pp. 1476-1492
Author(s):  
Jun Yuan ◽  
Lingzhi Zhao ◽  
Chengdai Huang ◽  
Min Xiao

2017 ◽  
Vol 36 (2) ◽  
pp. 399-421
Author(s):  
Sai Prasad ◽  
Gaurav Raina

Abstract The analysis of transport protocols, along with queue management policies, forms an important aspect of performance evaluation for the Internet. In this article, we study Compound TCP (C-TCP), the default TCP in the Windows operating system, along with the Exponential-RED (E-RED) queue policy and the widely used Drop-Tail queue policy. We consider queuing delay, link utilization and the stability of the queue size as the performance metrics. We first analyse the stability properties of a nonlinear model for C-TCP coupled with the E-RED queue policy. We observe that this system, in its current form, may be difficult to stabilize as the feedback delay gets large. Further, using an exogenous and non-dimensional parameter, we show that the system loses local stability via a Hopf bifurcation, which gives rise to limit cycles. Employing Poincaré normal forms and the center manifold theory, we outline an analytical framework to characterize the type of the Hopf bifurcation and to determine the orbital stability of the emerging limit cycles. Numerical examples, stability charts and bifurcation diagrams complement our analysis. We also conduct packet-level simulations, with E-RED and Drop-Tail, in small and large buffer-sizing regimes. With large buffers, E-RED can achieve small queue sizes compared with Drop-Tail. However, it is difficult to maintain the stability of the E-RED policy as the feedback delay gets large. On the other hand, with small buffers, E-RED offers no clear advantage over the simple Drop-Tail queue policy. Our work can offer insights for the design of queue policies that can ensure low latency and stability.


2014 ◽  
Vol 129 ◽  
pp. 232-245 ◽  
Author(s):  
Wenying Xu ◽  
Jinde Cao ◽  
Min Xiao

Sign in / Sign up

Export Citation Format

Share Document